Monthly Archives: December 2018

CNA2019

David Coletto confirmed for CNA2019

Get perspective on new nuclear and the public with David Coletto at CNA2019.

February 28, 2019 – 12:00

Is the public still imprisoned within a distorted, cliché-ridden perception of nuclear technology – despite its clean energy bona fides, its reliability and affordability?

If climate change and urgently reducing GHG missions constitute the greatest challenge facing our societies, then why the continued opposition of certain sectors of the public and governments to nuclear technology?

Will millennials and following generations warm up to New Nuclear?

Join us for lunch on Thursday, February 28, for some perspective from CNA keynote speaker David Coletto.

David is one of the founding partners and CEO of Abacus Data. He has almost a decade of experience working in the marketing research industry and is an industry leader in online research methodologies, public affairs research, corporate and organizational reputation studies, and youth research.

For more information about CNA2019 visit https://cna.ca/cna2019/.

Uncategorized

A Carbon Tax Isn’t Enough — Canada Needs More Nuclear

By John Barrett, President and CEO, Canadian Nuclear Association
Originally published in the National Post, December 18, 2018

Today, the big federal-provincial debate centres around Ottawa’s plan to introduce a carbon tax. Changes in provincial governments have brought premiers into office who are openly opposed to Ottawa’s plan. But, as a country, are we becoming too wrapped up in one specific policy to combat climate change?

Climate change mitigation cannot be successful through carbon pricing alone. By only focusing on this we are losing sight of the importance of ramping up our clean electricity capacity.

Global emissions continue to increase at a rapid pace and most G20 countries are not on track to meet their Paris commitments, according to a recent report by the United Nations Environment Programme (UNEP). The sheer amount of clean electricity needed to meet future demand and help end energy poverty in the developing world will take all available generating sources.

Standing above all other options in sheer capacity to generate large quantities of clean electricity is nuclear energy. It is a solution that is proven and available now.

Greater progress required for a cleaner future

Canada’s nuclear reactor technology and uranium exports have contributed globally to the avoidance of millions of tonnes of CO2 over the last 30 years, by displacing fossil fuel sources.

Today, nuclear energy produces approximately 15 per cent of Canada’s electricity. In Ontario, it provides 60 per cent of the province’s electricity, and in New Brunswick, it provides 30 per cent.

Ontario is justly proud of phasing out coal generation. Contrary to what some people would have us believe, this was not due to variable renewable energy sources such as wind and solar coming online, but rather the refurbishment and subsequent coming online of Bruce Power nuclear reactors that made the end of coal a reality.

Last year, Sweden generated a whopping 95 per cent of its total electricity from zero-carbon sources, with 42 and 41 per cent coming from nuclear and hydroelectric power, respectively. France generated 88 per cent of its electricity from zero-carbon sources, with 72 and 10 per cent coming from nuclear and hydro sources. In both countries, the establishment of a fleet of nuclear power reactors during the 1970s and 1980s effectively decarbonized their electricity supply.

A plan for Canada and the world

While the contributions of wind and solar continue to climb, they cannot solve the immediate need. As they produce energy intermittently, they can’t run 24/7 and require backup generation, usually through fossil fuel sources, which add to GHG emissions.

By contrast, there is growing consensus for the need to ramp up nuclear. In April of 2014, the UN’s Intergovernmental Panel on Climate Change recommended tripling the amount of energy use from nuclear and renewable sources to keep climate change within two degrees Celsius.

Furthermore, Canada’s Mid-Century Long-Term Low-Greenhouse Gas Development Strategy, released at COP22, included nuclear in all the models it espoused for achieving drastic GHG emission reductions by 2050.

The nuclear industry has innovative new reactor technologies under development. They are distinguished by their smaller size, lower costs, and diverse applications, from powering off-grid communities to heavy industrial processes to hydrogen production. This is what we call the new nuclear – and it’s on its way.

By using today’s proven nuclear power and tomorrow’s new nuclear, we have a chance in Canada to actually meet our GHG reduction targets and claim real leadership in the transition to a low-carbon future.

Uncategorized

Hurricane Florence no threat to nuclear power plants

Satellite image of Hurricane Florence

Nuclear power has once again withstood threats from Mother Nature.

Hurricane Florence, which battered the U.S. East Coast in September, was worse than predicted.

“Many of the dire predictions came true,” wrote Grist magazine reporter Eric Holthaus. “In the past few days, Hurricane Florence has become the worst rainstorm in history for North Carolina, as well as the entire East Coast.”

The four-day rainfall accumulation of nearly 36 inches, which was measured in Elizabethtown, North Carolina, is above the previous record for a hurricane anywhere on the East Coast. It broke the North Carolina record by nearly a foot.

In the lead-up week before Florence made landfall, the media was full of stories about how as many as nine nuclear reactors could be in its path.

According to Bloomberg News, out of the nine nuclear plants that were potentially in the path of Florence before the storm landed Friday, just one was forced to close.

Brunswick nuclear power plant in North Carolina

The Brunswick nuclear facility was the only one taken offline because of the Hurricane.

While there were concerns about access to the plant due to flooding in the wake of Florence, the U.S. Nuclear Regulatory Commission issued a statement on September 18, to reassure the public about the situation.

“The plant’s two units remain shut down in a safe condition, and flooding in nearby areas has not affected the plant site,” the statement read. “While there are still some site access issues, it is possible to move personnel and supplies to and from the site. Access to the plant is expected to improve over the next couple of days.”

This is the second year in a row that nuclear power plants were tested in the U.S. South during hurricane season.

Last year, Florida’s two nuclear power plants withstood the fury of Hurricane Irma. Turkey Point and St. Lucie nuclear power plants which serve approximately 1.5 million customers are designed to withstand the natural force of such extreme events like hurricanes. Florida’s nuclear plants sit approximately 20 feet above sea level and are constructed to withstand the force of severe flooding and storm surges. Backup safety systems are also in place to ensure site safety.

Concerns about nuclear power plants being affected by hurricanes makes great headlines, but because of preparedness, problems are averted.

Ted Kury, director of energy studies at the University of Florida’s Public Utility Research Center, explained it best in a piece for The Conversation.

“To prevent accidents, the outer wall of reactor containment systems are made out of reinforced concrete and steel,” he wrote. “Since they are designed to withstand the impact of a large commercial airliner, flying debris – even if it’s propelled by 200 miles-per-hour winds – is unlikely to pose much of a threat.”

According to Kury, utilities prepare for storms by inspecting power stations, securing equipment, testing backup pumps and generators and stocking critical supplies in case workers have to stay on site.

Uncategorized

QP Briefing ads show nuclear is good for Ontario

Ad #1 online throughout July 2018.

 

 

 

 

 

 

 

Ad #2 online throughout September 2018.

CNA Responds

CNA response to a Montreal Gazette op-ed by Jack Gibbons of the Ontario Clean Air Alliance

Re: “Quebec and Ontario have much to gain from energy co-operation” (Montreal Gazette, December 4), by Jack Gibbons of the Ontario Clean Air Alliance.

Jack Gibbons argues in his letter that Ontario should purchase hydro power from Quebec to replace the 60 per cent of its power generated by nuclear energy.

In 2017, Ontario’s Independent Electricity System Operator (IESO) looked at the electrical interconnections between Ontario and Quebec. It found the maximum potential of reliable import capability from Quebec into Ontario is 2,050 MW, or approximately 15% of Ontario’s installed nuclear generating capacity.

According to the IESO, importing this amount would require five to seven years of upgrades to Ontario’s transmission system at a cost of at least $220 million. Any more hydro imports would require the construction of new interties at a cost of up to $1.4 billion, additional transmission infrastructure in both provinces, and take up to 10 years to complete.

Ontario’s nuclear plants produce electricity safely and reliably, every day, around the clock at 30% less than the average cost to generate power. Refurbishing Ontario’s nuclear reactors will extend their lives for decades, provide a cost-effective, long-term supply of clean electricity, create thousands of jobs within the province and generate lifesaving medical isotopes in the process.

John Barrett
President and CEO
Canadian Nuclear Association
Ottawa, ON

Uncategorized

Hill Times ads promote the benefits of nuclear in Canada

Ad #1 published in the “Energy” brief on August 13, 2018.

Ad #2 published in the “Innovation” brief on October 1, 2018.

Ad #3 published in the “Energy” brief on December 3, 2018.