CNA2016

Combatting Climate Change with Nuclear Power

As May came to a close, the AtomExpo began in Moscow, the opening address focused largely on meeting  climate goals laid out at COP21 in Paris in December. And the key message was clear: Nuclear power is needed in order for the world to combat climate change.

How is this so?

Environment and Climate Change Canada has projected that by 2030, Canada’s GHG emissions will be two-thirds higher than previously thought.

Canada’s new government is committed to the climate fight.  Minister Catherine McKenna agreed with other nations to try to limit the temperature increase to 1.5 degrees Celsius, slightly below the prior 2 degree target.

With the global population rising, it is clear that in order for the world to meet its climate targets; where we get our energy from will be of the utmost importance.  A lower GHG economy in all likelihood will have an integrated energy mix, blending low-carbon sources to supply the needs of consumers while protecting the environment.

A government report in 2012 shows that over 22 years the rates of carbon dioxide that have entered the atmosphere have risen by 47 per cent. China and the United States were the largest contributors to GHG emissions, while Canada accounted for 1.6%.

The rise in climate inducing gases further highlights the critical importance of moving away from higher emitting energy sources. Just how many climate warming gases are produced in order to get the energy to power our lights, fridges and hot water tanks, is best assessed through lifecycle emissions.

The lifecycle emissions of a given energy source include all of the greenhouse gases produced in both the construction and operation of an energy plant as well as the emissions required to turn a natural resource, such as uranium, coal or gas, into energy in that plant.

sUPPLYCHAIN

According to recent information from the Intergovernmental Panel on Climate Change (IPCC), nuclear is one of the cleanest and lowest GHG producing forms of energy.

c02 emissions by energy source

This means that nuclear power has huge potential to help address the global climate challenge.  Earlier this year, NRCAN outlined some of the major benefits of the Canadian nuclear industry. Canada is home to the largest high-grade uranium deposits in the world. Our CANDU technology meets the highest safety and regulatory standards. At the same time, the nuclear industry continues to provide opportunities for other countries to step away from more GHG intensive energy sources and move towards a cleaner, lower-carbon society.

Uncategorized

WiN-Canada Conference and Call for Papers

WiN

Uncategorized

Nuclear Fun Fact: Radiation Processing

Textiles

Uncategorized

Terrestrial Energy to Sponsor Sustainable Investment Forum in NYC

TerrestrialForumSocialmediaImageThe first UN general assembly following the COP21 Climate Change Summit in Paris, France last December will be held in New York City this September as part of Climate Week.

Climate week runs September 19th-26th, and one of the marquee events will be the Sustainable Investment Forum, sponsored in part by CNA Member, Terrestrial Energy.

This is a global opportunity for the nuclear community to come together and show the world how we can help contribute to a cleaner environment.

For more information and to join in the conversation in New York City this fall, please visit: http://www.sustainableinvestmentforum.org/#

Uncategorized

Rolling Out Refurbishment with Reliability and Skills Development in Mind

In just a few short months, Ontario will begin refurbishing 10 nuclear reactors at the Darlington and Bruce Nuclear Generating Stations. Refurbishment means replacing key reactor parts, such as pressure tubes, so the reactors can keep operating safely and at peak performance.

Refurbishment has been planned far in advance. It will extend by decades the lives of reactors that have already provided affordable and reliable electricity to Ontarians for 25 years. And because nuclear plant operations do not emit greenhouse gases, they are also addressing Ontarians’ growing concerns about climate change.

Keeping on schedule

Just as with renovating your home or servicing your car, scheduling the refurbishments is key to minimizing inconvenience. After all, nuclear reactors provided 62% of Ontario’s electricity in 2014, and refurbishing each reactor takes two to three years. Having too many of them offline at the same time would lead to brownouts in the power grid, or force Ontario to buy more expensive – and potentially less clean – electricity from other sources.

Ontario’s 2013 Long-Term Energy Plan, which set the refurbishment program in motion, recognized these challenges. The decision to refurbish reflects three of the five core principles of the Plan: cost-effectiveness, reliability, and clean energy.

To ensure reliability, the Plan set out a sequence for refurbishment at both the Darlington and Bruce facilities:

CNA-100 Nuclear Timeline-D4 (2)

This sequence ensures that no more than three reactors are offline at the same time. It allows spacing of the refurbishments so that the teams of engineers and other skilled professionals can learn from each refurbishment. That will help them to improve their methods and generate cost savings. During the early part of the project, up to 2020, Ontario will keep operating its reactors at the Pickering facilities.

Long-term benefits

The spacing of refurbishments over 15 years will ensure that nuclear power remains the major source of Ontario’s baseload power – the foundation of the province’s electrical supply. It will also provide lasting employment to skilled workers who will have opportunities to continue working on the reactors they helped refurbish – contributing to Ontario’s economy and growing the province’s skills base.

Uncategorized

Nuclear Fun Fact: Harriet Brooks

Harriet Brooks