Author Archives: Michelle Leslie

Deep Geologic Repository: A Matter Of Science

April 3rd, 2017
By: Dr. John Barrett
President & Chief Executive Officer
Canadian Nuclear Association

The recent CTV W5 segment on Ontario Power Generation’s proposed Deep Geologic Repository (DGR) in Kincardine, Ontario, left the impression that some opponents viewed the location of the project as a simple act of convenience.

It is not a matter of convenience but a matter of science.

The DGR project intends to store low- and intermediate-level nuclear waste deep underground. In public consultations regarding the DGR, and again in the W5 segment, there is a suggestion that OPG chose the Kincardine site for its convenience, while ignoring concerns that radioactive material might seep through the rock and contaminate Lake Huron.

This flies directly in the face of the 2015 report of the federal Joint Review Panel, which held more than 33 days of public hearings and reviews more than 12,500 pages of evidence. The Panel’s Environmental Assessment called the geology of the area “highly suitable.”

Here’s why.

The host rock under the Kincardine site is four times the strength of concrete, and it would take 1 million years for one molecule of water to pass one metre in this rock.

The rock was formed more than 450 million years ago. It has remained intact despite two mountain formations and nine ice ages. Above the host rock rests 200 metres of impermeable shale.

Taken together, the rocks of this unique formation provide a natural barrier that scientists from around the world agree is perfect for permanently and safely isolating waste.

While W5 painted a picture of a “town divided,” this is actually not accurate.

The DGR actually has broad community acceptance. The Municipality of Kincardine reaffirmed its support for the project as recently as this past February via a resolution passed by the municipal council. Similar expressions of support for the DGR were also passed by Bruce County, which comprises 8 municipalities, including Kincardine, and by Huron-Kinloss and Saugeen Shores.

Much of the low- and intermediate-level waste that DGR will store currently sits above ground at OPG’s Western Waste Management Facility, located at the Bruce Power site at Kincardine. Is keeping it there indefinitely the better choice?

The answer finds its roots in moral responsibility and in evidence-based science.

Since our generation benefitted from the use of nuclear-generated electricity, we also bear responsibility for the waste. Responsibility rests with us, not our grandchildren.
The DGR is based on rigorous science, not “convenience”. It is planned in ideal geology, with world-leading engineering. The federal Joint Review Panel reports states the DGR will perform its job for 1,000,000 years.

The Deep Geologic Repository provides a way to manage our responsibility safely and securely. It will be a lasting solution for the waste, ensuring peace of mind.

ONTARIO’S NUCLEAR ADVANTAGE: LOW-COST ELECTRICITY, JOBS & GROWTH; HEALTH & CLEAN AIR

Ontario has a nuclear advantage. Yet many in the province don’t realize it or how much it benefits them and their everyday lives
When we flick on the lights, turn on the computer, or charge electric vehicles, we give no thought to how our electricity is produced. We should take comfort in knowing that nuclear power is the backbone of Ontario’s electricity system.

Nuclear power provides families and businesses with a low-cost, safe, reliable source of electricity, and it makes our Energy Star appliances even cleaner when they run on low GHG-emitting Nuclear. For those who like solid facts: Ontario’s nuclear plants supply over 13,000 MW of clean power – or, about 60% of Ontarians’ needs every day of the week, every week of the year. What’s more, as Ontario’s electricity demand increases, with people turning to electric vehicles and the province growing in population and economic activity, nuclear power can expand to ensure our electricity stays clean.

When we think of the challenges of climate change, and the need for carbon-pricing, we do not automatically realize that nuclear power is virtually GHG-emissions-free. The clean electricity from nuclear generation is not impacted by cap-and-trade costs.

When we urge our governments to do something about the effects of climate change, we don’t always grasp that Ontario’s ability to end coal-fired generation was largely made possible by the return to service of two Bruce Power reactors, and the return to commercial operation of units 1 and 4 at Pickering.
The clean, smog-free air in parts of southern Ontario is a blessing to those with asthma or breathing problems. Today, Ontario has over 90% of its electricity powered by clean energy sources. Nuclear shoulders 2/3rds of that.

When we think of concerns about hydro bills, we often tend to lump all generation sources together. We assume they’re all equally to blame for producing expensive electricity. But that’s not the fact. Nuclear generation in Ontario is currently paid 6.6 cents/kWh compared to the average residential price of 11 cents/kWh, according to the Ontario Energy Board. And the power that’s bought by Ontarian consumers is reliable, not intermittent, and not dependent on the fluctuations of weather. Thankfully.

When we think of friends and family who have undergone treatment for cancer and when we assume that the medical equipment used around them is safely sterilized, we don’t say thank goodness for nuclear reactors. But we should. The reactors at Bruce Power and OPG’s Pickering plant produce 70% of the world’s Cobalt-60, used to attack cancer cells. Cobalt-60 is also used to sterilize gowns, gloves, implantable devices and syringes in hospitals in Ontario and around the world. What other energy sources treat cancer and save lives? Nuclear does.

When we think of high-tech, good-paying jobs for our families and children, we seldom look first to Ontario’s nuclear industry. But do Ontarians realize how many jobs are supported by the nuclear industry and how much communities benefit from having companies in the nuclear supply chain? The nuclear industry in Canada contributes over $6 billion annually to the economy and supports 60,000 direct and indirect jobs. Many of these are in Ontario, and they stay in Ontario because of the expertise and high-quality manufacturing and engineering skills required by the industry.

When it comes to innovation in advanced energy technologies, you only have to cite the potential of small modular reactors (SMRs) or the next generation of inherently safe reactors that recycle fuel to feel the excitement among the younger generation of scientists, engineers, environmentalists. They see increasingly what new innovations in nuclear can do to bring reliable, safe, emissions-free energy – in the quantities needed – to an energy-hungry world desperately wanting more. They will be the generation to deliver this extraordinary benefit to humanity.
Take all of these and add them up. What you get is Ontario’s incredible nuclear advantage. Time to recognize this and capitalize on it. Nuclear provides solutions to the pressing needs of today and tomorrow. Time to think afresh about nuclear and its contribution to growth, to the environment, to an innovative, clean energy future.

An opportunity for such thinking is the Ontario Government’s forthcoming Long-Term Energy Plan. This is where Ontario’s nuclear advantage is established, underpinned and presented imaginatively for the future.

For our part, the Canadian Nuclear Association (CNA) is proud to launch a new website that promotes fact-based awareness and understanding of Canada’s nuclear success story: www.ontariosnuclearadvantage.com Ontario’s world-class nuclear sector is something of which Ontarians and all Canadians should be proud.

Op-Ed: Ontario’s Long-Term Energy Plan: Why Pickering Matters

Ontarians and their government are completing a review of the province’s Long-Term Energy Plan (LTEP) to guide energy decision-making over the next three years to 2019. As anticipated in the previous LTEP (2013-16), the government of Ontario announced in December 2015 plans for the refurbishment of 10 power reactors at the Darlington and Bruce Nuclear Generating… read more »

When Seconds Count

Strokes.

They happen when the blood that is circulating within the brain is cut off or reduced in an area resulting in a loss of oxygen to that part of the brain. If not treated right away the brain can die.

Thanks to nuclear medicine, doctors can better assess and treat stroke patients, saving lives.

With a stroke, every second counts.  Neurons or nerve cells are lost at a rate of 1.9 million per minute when the brain is deprived of oxygen. The loss of these and other key brain transmitters, or synapses leads to accelerated aging in the brain.

uhn

(Chart Courtesy of Dr. Timo Krings, Head of Neuroradiology, Joint Department of Medical Imaging, Toronto Western Hospital & University Health Network)

Dramatic treatment is required to save a patient’s life, everything has to move rapidly.

“2:00am: I was called for a stroke at the hospital. By 2:20 the team was at the hospital and by 2:40 we had removed the blood clot and the patient was off the operating table,” states Dr. Timo Krings, Head of Neuroradiology, University Health Network, Toronto Western Hospital.

From initial imaging to opening the blocked blood vessel and restoring blood flow happens in just a matter of minutes.

The proper diagnosis and successful treatment of strokes is thanks to a branch of Radiology known as Interventional Neuroradiology.

Interventional radiology involves a uses modern Nuclear Magnetic Resonance Imaging or Computed Tomography to identify where the blockage is within the brain and its size.

As Dr. Krings points out, imaging plays a major role in proper diagnosis and treatment.

“The imaging part is just as important because if we choose the wrong patient we can make things worse,” he explains. “If we open a vessel that was occluded for too long, l the dead brain won’t recover but the patient can be in danger because blood will rush to the dead brain, which can lead to a hemorrhage. Therefore the correct identification of right patients is as important as the treatment itself.”

Once the scan identifies a suitable patient, the treatment can begin.

Interventional Neuroradiology involves a minimally invasive procedure whereby an artery is punctured and small tubes known as catheters are placed into the blood vessels. In these small tubes, doctors can push in stents or devices into the blood vessels in order to treat the blood vessel from the inside out.

Symptoms you may be having a stroke: FAST

Face: Drooping eyelid or numbness on one side of your face. Vertigo or a whirling loss of balance

Arm: Unable to move your hand or arm on one side of your body

Speech: You can’t speak properly or speech is garbled

Time: Time is of essence and you should telephone 9-1-1 , if you think you may be having a stroke call 9-1-1

Dr. Krings points to a chain of stroke awareness and treatment. Beginning with the patient to be able to identify the symptoms of a stroke to emergency medical service (EMS) workers who can rapidly identify and take patients to stroke centers where emergency room (ER) teams can fast track patients into imaging.

“It’s a team effort between the patient, EMS, the ER doctor, neurologist, radiologist, dietician and rehab specialists. All of them have to play together to get the best outcome,” says Krings.

New Canadian guidelines call for the two pronged technique of imaging and interventional radiology as the best life-saving method to for the diagnosis and treatment of strokes.

 

Fighting Food Insecurity

Nuclear technology steps up to meet a huge challenge.

The world needs more food and lots of it. According to the World Bank, in order to meet growing global demands we must produce 50% more food by 2050.

At the same time, expanding populations and climate change threaten our ability to meet these goals. A recent report by United States Department of Agriculture (USDA) stated that, “as temperatures rise, crops will increasingly experience temperatures above the optimum for their reproductive development, and animal production of meat or dairy products will be impacted by temperature extremes.”Branch of an apricot tree with ripe fruits

Enter the International Atomic Energy Agency (IAEA). In order to produce more food under challenging environmental conditions and with less available land, scientists from the IAEA are working with the Food and Agriculture Organization of the UN to find solutions to food insecurity.

One solution is the Nuclear Techniques in Agriculture program, a way to address food shortages through, “using radiation induced mutation, mutation detection and pre-breeding technologies.” Exposing plants to small doses of radiation can make them more resistant to disease and climate change.

One of the foods being targeted by this program is quinoa. This gluten free grain, common to the Andean people, is known as a complete protein, containing all nine essential amino acids. Because of its genetic diversity, quinoa is able to be grown under different environmental conditions, making it an appealing crop to grow; almost 100 countries currently harvest it.

Food irradiation can also help to kill potentially deadly bacteria and the use of isotopes can help to measure resource levels such as the health of soil and water storage within the land, providing farmers with important information on the health of their resources so that they can more effectively use their land to yield greater harvests.

As part of addressing food security issues, the International Atomic Energy Agency (IAEA) is using its sterile insect technique (SIT) to help Mauritius fight back against fruit flies. Fruit flies, native to Southeast Asia, attack a variety of much-needed produce including bananas, mangos, eggplant and squash. In a release by the IAEA in mid-June the Minister of Agro-Industry and Food Security for Mauritius addressed the magnitude of the problem.

“160 million Mauritian Rupees-over 4 million Euros-are lost annually as a result of the damage caused by fruit flies,” according to Mahen Kumar Seeruttun, Minister of Agro-Industry.

Being able to save crops and produce more bountiful harvests means the ability to address starvation and provide much needed nutrients. Today, it is estimated that 2 billion people live with food insecurity and that one in eight are starving, highlighting the importance of these nuclear initiatives. From hunger to hope, technology can help to fight back and feed those who are most in need.

 

Combatting Climate Change with Nuclear Power

As May came to a close, the AtomExpo began in Moscow, the opening address focused largely on meeting  climate goals laid out at COP21 in Paris in December. And the key message was clear: Nuclear power is needed in order for the world to combat climate change.

How is this so?

Environment and Climate Change Canada has projected that by 2030, Canada’s GHG emissions will be two-thirds higher than previously thought.

Canada’s new government is committed to the climate fight.  Minister Catherine McKenna agreed with other nations to try to limit the temperature increase to 1.5 degrees Celsius, slightly below the prior 2 degree target.

With the global population rising, it is clear that in order for the world to meet its climate targets; where we get our energy from will be of the utmost importance.  A lower GHG economy in all likelihood will have an integrated energy mix, blending low-carbon sources to supply the needs of consumers while protecting the environment.

A government report in 2012 shows that over 22 years the rates of carbon dioxide that have entered the atmosphere have risen by 47 per cent. China and the United States were the largest contributors to GHG emissions, while Canada accounted for 1.6%.

The rise in climate inducing gases further highlights the critical importance of moving away from higher emitting energy sources. Just how many climate warming gases are produced in order to get the energy to power our lights, fridges and hot water tanks, is best assessed through lifecycle emissions.

The lifecycle emissions of a given energy source include all of the greenhouse gases produced in both the construction and operation of an energy plant as well as the emissions required to turn a natural resource, such as uranium, coal or gas, into energy in that plant.sUPPLYCHAIN

According to recent information from the Intergovernmental Panel on Climate Change (IPCC), nuclear is one of the cleanest and lowest GHG producing forms of energy.

co2This means that nuclear power has huge potential to help address the global climate challenge.  Earlier this year, NRCAN outlined some of the major benefits of the Canadian nuclear industry. Canada is home to the largest high-grade uranium deposits in the world. Our CANDU technology meets the highest safety and regulatory standards. At the same time, the nuclear industry continues to provide opportunities for other countries to step away from more GHG intensive energy sources and move towards a cleaner, lower-carbon society.