Category Archives: Uncategorized

Uncategorized

Climate Action, Clean Energy and the Case for Nuclear

By John Barrett
President and CEO
Canadian Nuclear Association

Originally published by Policy Magazine.

With more and more countries struggling to meet the emissions goals set out in the 2015 Paris Agreement, it makes sense to consider all the low-carbon options at our disposal. Canadian Nuclear Association CEO John Barrett makes the case, ahead of the G7 in Charlevoix, for an approach that includes a renewed focus on nuclear energy. 

As world leaders gather in Charlevoix, Quebec, this June for the 2018 G7 Summit, the agenda will focus on concrete solutions to global challenges that extend far beyond the borders of these seven countries. Climate change and clean energy will be front and centre. What does Canada have to offer in leadership and real solutions?

Canada and France are leading the way in clean energy generation in the G7 and this is due in part to major investments in low-carbon, affordable nuclear power. In fact, according to a recent report by Natural Resources Canada, Canada’s electrical system is 80 per cent free of greenhouse gas emissions, second only to France out of all G7 nations. Furthermore, thanks to investments in clean energy, Canada’s overall GHG emissions profile went down by a few percentage points in recent years even as the economy grew. 

This is important because time to meet international climate change targets is running out. 

The International Energy Agency’s first Global Energy and CO2 Status Report found global carbon emissions hit a record high in 2017, after three years of being flat. In Canada, a joint audit, conducted by federal Environment Commissioner Julie Gelfand and auditors general in nine provinces, found Canada was not on track to meet its 2020 or 2030 greenhouse gas emission targets. 

Investments in clean and affordable energy aren’t just about reducing emissions, they are the foundation to ensuring access to jobs, health-care and education. Clean and cheap energy is necessary to lift communities out of poverty while ensuring environmental protection. Without proper electricity, countries suffer. As the World Bank reported, “one-quarter of the world population have no access to electricity. In the absence of vigorous new policies, 1.4 billion people will still lack electricity in 2030.” 

And, according to the World Health Organization (WHO), seven million people die every year from air pollution. The challenge is to produce policies and investments to transition to a lower-carbon economy. And to help other countries, where appropriate, to acquire the technology and materials for generating electricity from low-carbon sources. 

Some propose single solutions based on a preferred technology. Single answers to complex problems invite false hope for technologies that are today neither available nor proven effective when quantity, reliability and affordability are considered. This adds a considerable risk for huge costs as well as detrimental environmental impacts. 

For example, Germany’s Energiewende is a cautionary tale on why going green isn’t as easy as it sounds. Germany has shut down nuclear plants while making huge investments in wind and solar energy. However, its emissions have not declined. The new renewable energy has only offset the loss of nuclear—meaning that Germany has given up on meeting its 2020 emissions targets. Coal still represents 40 per cent of Germany’s electricity mix. At the same time, the cost of power over the last decade has escalated, rising by close to 50 per cent. 

This begs the question that, if we are really concerned about the impacts of climate change and if we really do need to ramp up energy production as a method of lifting people out of poverty and driving economic growth, why would we not include a low-carbon option such as nuclear power?

Instead of looking to Germany, look to Canada, especially the province of Ontario. Ontario is the real clean energy leader. 

Nuclear power is the main driver of Ontario’s almost zero-emission energy grid. The province is home to one of the largest investments in clean-energy nuclear on the planet. Nuclear provides the bulk of the electrical generation to the province; close to two-thirds of the energy supplied every day comes from the nuclear generating stations. 

Outside Ontario, New Brunswick has also demonstrated the benefits of nuclear to a clean and affordable electrical grid; displacing tens of millions of tons of carbon dioxide from the atmosphere. And thanks to the power of uranium from Saskatchewan, a pop-can sized amount of this rock is all the amount a person would need to power their lifetime; using a small amount of the Earth to create massive amounts of power.

The next generation in nuclear energy technology is already here. Natural Resources Canada is leading a mapping process under the Energy Innovation Program to explore the potential for on- and off-grid applications for small modular reactor (SMR) technology in Canada. Driven by interested provincial and territorial governments and energy utilities, the exercise will assess the characteristics of different SMR technologies and how they align with user requirements and Canadian priorities. The roadmap will be an important step for Canada to advance innovative, next-generation nuclear technologies and become a global leader in the emerging SMR market.

Meanwhile, the CANDU-reactor refurbishment program, supported by Ontario’s Long-Term Energy Plan, is underway and moving through the first phase at the Darlington Nuclear Generating Station on time and on budget. This program will replace major components and refurbish 10 reactors in total over the next 12 years at Darlington NGS and at Bruce Power’s site in Kincardine.  

This $26 billion program is the single largest clean-energy investment by any jurisdiction in the western hemisphere and possibly beyond. Moreover, it has unleashed creative juices, as both Ontario Power Generation and Bruce Power are encouraging innovation and advanced technology use at every step. Already there are important advances in robotics and control systems that will have application in other, non-power sectors of the Canadian economy.

Canada’s nuclear contributions to the G7 aren’t limited to energy. Nuclear science and technology has many proven benefits, meeting nine of the United Nations 17 Sustainable Development Goals. Nuclear reactors provide opportunities for water desalination to communities that experience water shortages. Desalinating water requires a tremendous amount of energy and nuclear can do it while releasing hardly any greenhouse gas emissions into the atmosphere.

Research and innovation in health care has helped to make Canada a world leader in the production of Cobalt-60, which is used in many areas of our health industry. Cobalt-60 is used in sterilization, diagnostics and treatments. This includes isotopes to help detect and treat diseases, new research into gamma therapy, and blasting tumor cells from the inside out and protecting healthy, surrounding tissues.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources)—a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

The next generation of nuclear technology will build on Canada’s track record of excellence, looking to recycle current spent fuel, developing reactors that can provide power and heat to communities and even hold the promise of carbon-free gasoline. 

Climate change and clean energy are two of the most pressing issues of our time. Canada has a real opportunity to continue to take centre stage on these issues. The facts still matter. If we are to achieve our climate targets, sustainably manage resources for future generations and provide the world with access to clean and cheap energy, then we need nuclear to be part of the mix. Recognizing this is an important step to bringing real solutions today, without waiting for technologies that are not here now. 

With time running out to meet greenhouse gas emission targets and to prevent climate change from increasing temperatures by two degrees Celsius—now is not the time to expect a silver bullet to appear or to rely on one technology over another. 

A more effective and realistic approach is to foster collaboration that makes the best use of all available solutions to create a low-carbon future, allowing the world to meet emission targets while avoiding the potentially catastrophic impacts of climate change. 

Thanks to nuclear’s role in our electricity mix, Canada and Ontario can show how it can be done.

Uncategorized

CNA Has a New Key Messages App!

The CNA has a new key messages app and it’s a significant improvement over the previous version.

The free, user-friendly app features key messages around popular nuclear-related topics, along with well-documented proof-points.

This new version was developed internally so that the CNA has complete control over the look and functionality. Changes and additions can also be easily managed this way.

Originally designed with CNA members in mind, this app can be used by anyone to explain and justify the use of nuclear technology in Canada and worldwide.

The app can be accessed by searching in the App Store (iPhone) or Google Play (Android) using appropriate keywords or by following these links:

We are very excited about this new digital addition to our collateral, and encourage you to share the news with friends and colleagues.

Uncategorized

CNS Call for Papers

The Conference
The Canadian Nuclear Society will be holding its 8th International Conference on Simulation Methods in Nuclear Science and Engineering in Ottawa, Ontario, Canada, October 9-11, 2018 (Tue -Thu).

Objective of the Conference
The objective of the Conference is to provide an international forum for discussion and exchange of information, results and views amongst scientists and engineers working in the various fields of nuclear science and engineering.

Topics of interest
The scope of the Conference covers all aspects of nuclear science and engineering, modelling and simulation, including, but not limited to:

  • Reactor Physics
  • Thermalhydraulics
  • Safety Analysis
  • Fuel and Fuel Channel Analysis
  • Computer Codes and Modelling
  • Verification &Validation of Computer Codes
  • Best-Estimate and Probabilistic Safety Analysis
  • Sensitivity and Uncertainty Analysis
  • Monte Carlo and its Applications
  • Operation Support
  • Simulation for Fusion Energy Applications
  • Advanced Reactors & Advanced Fuel Cycles
  • Irradiated-Fuel, Proliferation Resistance
  • Plant Refurbishment and Commissioning

Courses, Workshops and Tours (preliminary):
Tour to Chalk River Nuclear Laboratories (Fri 12) Workshops on DRAGON and SERPENT (Tue 9)

Important dates and deadlines
Full-paper submission: 2018 May 1
Notification of acceptance: 2018 July 1
Final paper submission: 2018 September 1

Local Organising Committee
Executive Chair: Adriaan Buijs, McMaster University
Technical Program Chair: Eleodor Nichita, University of Ontario Institute of Technology
Plenary Program Chair: Wei Shen, CANDU Owners Group
Assistant Executive Chair: Ben Rouben, 12&1 Consulting
Treasurer: Mohamed Younis, Retired (formerly AECL)

Conference Secretariat (All Inquiries):
CNS Office: cns-snc@on.aibn.com
Tel.: +1 416-977-7620

Guidelines for Submission of Papers:
Submissions should present facts that are new and significant or represent a state-of-the-art review.
Submit full papers to: https://www.softconf.com/h/8icsmnse.
The template can be found here and on the conference website.

For more information please visit: http://cns-snc.ca/events/8icsmnse/

Uncategorized

2018 Canadian Nuclear Achievement Awards – Call for Nominations

We are announcing the Call for Nominations for the 2018 Canadian Nuclear Achievement Awards, jointly sponsored by the Canadian Nuclear Society (CNS) and the Canadian Nuclear Association (CNA). These Awards represent an opportunity to recognize individuals who have made significant contributions, technical and non-technical, to various aspects of nuclear science and technology in Canada.

Nominations may be submitted for any of the following Awards:
• W. B. Lewis Medal
• Ian McRae Award
• Harold A. Smith Outstanding Contribution Award
• Innovative Achievement Award
• John S. Hewitt Team Achievement Award
• Education and Communication Award
• George C. Laurence Award for Nuclear Safety
• Fellow of the Canadian Nuclear Society
• E. Jervis Award

The deadline to submit nominations is January 19, 2018. The Awards will be officially presented during the CNS Annual Conference held June 3 – 6, 2018 in Saskatoon, SK.

For detailed information on the nomination package, Awards criteria, and how to submit the nomination please visit: https://cns-snc.ca/cns/awards.

If you have any questions, please contact Ruxandra Dranga, Chair – CNS/CNA Honours and Awards Committee by email at awards@cns-snc.ca.

Uncategorized

Nuclear Science: Preventing Future Ebola Outbreaks

West Africa experienced the largest Ebola outbreak in history in 2014. It claimed over ten thousand lives and impacted the entire countries of Liberia, Sierra Leone and Guinea. In June 2016, the World Health Organization (WHO) declared an end to Ebola and months later, in April of this year, Liberia removed its temporary Ebola treatment facility only for Africa to announce another outbreak just a month later.

Contagious and often deadly, the Ebola virus or hemorrhagic fever can be transmitted from animal to human and through human-to-human contact. Between 2-21 days after infection, a patient will experience symptoms that resemble a flu (fever, sore throat, headaches). As the virus continues to damage the immune system and organs, internal and even external bleeding can occur. Death rates for the disease can be as high as 90%.

The 2014 outbreak closed many schools in the region that remained locked for almost an entire year. Close to twenty thousand children lost their families, or were left without one or both parents, according to information reported on by UNICEF.

To prevent a repeat of the deadly Ebola 2014 outbreak, a team of scientists with the International Atomic Energy Agency (IAEA) are using nuclear science and technology to be able to effectively diagnose such viruses.

“We demonstrated our ability to respond quickly to emergencies such as the Ebola and Zika viruses, supplying affected countries with simple nuclear-derived kits so they could detect the diseases quickly and accurately in the field,” said IAEA Director General Yukiya Amano in his speech in late May at the International Conference on Technical Cooperation.

Early and rapid detection helps to limit the spread of such diseases. There are nuclear-derived techniques that scientists can use to help identify Ebola such as polymerase chain reaction technology (PCR) which examines the DNA of cells. Researchers in the Democratic Republic of Congo are hunting  fruit bats in the hopes that they might hold answers on Ebola, specifically, how the virus jumps from bats to other animals or how it causes outbreaks. And it’s not just researchers in the Congo. As pointed out by the IAEA, veterinarians in Africa are working in partnership with the agency to help prevent the spread of Ebola.

“Around 75% of human diseases originate from animals, which is why it is so important to stop them at the animal level. Nuclear-derived technology helps us do this,” according to Abel Wade, Director, National Veterinary Laboratory (LANAVET), Yaounde, Cameroon.

As was witnessed during the 2014 Ebola outbreak, quick and effective diagnoses is key to preventing large-scale transmission and infection. The most recent outbreak in the Congo was declared under control only a month after it was discovered.

Uncategorized

Being Prepared for the Unexpected: The Nuclear Industry is Disaster Ready

In 2011, one of the most powerful earthquakes ever recorded opened-up the sea floor and sent a wall of water rushing along the Japanese coast knocking out the Fukushima Daiichi nuclear power plant. Images of the devastation made international headlines and raised concern over the safety and preparedness of nuclear power plants in the event of a disaster.

Recently, the government of Ontario announced that it is updating the province’s nuclear response plan. It will have a very solid and impressive basis on which to build.

Although the risk of a tsunami-induced accident at Canada’s nuclear power sites is close to non-existent, being prepared for the unexpected has been at the core of the nuclear industry’s commitment to safety. In fact, within a year of the Fukushima accident, Canada’s nuclear operators took additional steps, including a full-scale emergency exercise that was hosted by Ontario Power Generation (OPG) at its Darlington operations. The exercise brought together emergency responders from all levels of government and OPG, to test accident readiness.

Safety is a crucial pillar of success, and that is why the industry continues to add new measures to existing emergency response plans. As one example, OPG installed flood barriers to protect low-lying equipment in the event of a severe weather disaster. During the Fukushima event, an explosion took place because of a buildup of hydrogen. So OPG installed passive autocatalytic recombiners to limit the risk of a buildup of hydrogen should a leak ever occur.

Bruce Power, Ontario’s other nuclear generator, has built upon its safety foundation post-Fukushima, making additional investments in a suite of back-up generators and fire trucks. A new Emergency Management Centre, equipped with its own back-up power supply was also set up, and last October Bruce Power hosted 500 people from over two dozen agencies to take part in a week-long emergency preparedness drill called Exercise Huron Resolve.

This week-long exercise involved various industry partners and government including The Ministry of Health and Long Term Care, The Ontario Provincial Police, The Ministry of Labour’s Radiation Protection Services and OFMEM’s Provincial Emergency Operations Centre, which is based in Toronto.

Outside of Ontario, in New Brunswick, the Point Lepreau nuclear plant recently conducted  two large-scale emergency response exercises. A two-day simulation, in 2015, was conducted in partnership between NB Power and New Brunswick’s Emergency Measures Organization and this past May the company teamed up with the Canadian Nuclear Safety Commission (CNSC) to run through security emergency response exercises.

It is important to point out that, prior to Fukushima, nuclear emergency response plans were already in place. In fact, the nuclear industry’s commitment to emergency planning has been in place since the operation of nuclear power plants began, over fifty years ago. Since that time, operators have continued to build upon best practices.

While the geography of Canada makes it highly unlikely that an earthquake and ensuing tsunami, like the one that swallowed the Japanese coast, could ever occur here, we know that we must invest and demonstrate our commitment to planning and preparing for the unexpected. Our people are our number one asset, living and working in the communities they serve. Keeping our communities safe isn’t just part of our job it’s part of our community responsibility. One that we take pride in.