Uncategorized

New Fault Detection Technology to Improve Power Plant Safety

Fault DetectionResearchers at the University of Ontario Institute of Technology (UOIT) in Oshawa, Ontario, have been working with Ontario Power Generation (OPG) and Bruce Power to develop innovative solutions for nuclear power plant safety.

The process is called Fault Semantic Network. Dr. Hossam A. Gabbar, who is a professor with UOIT’s Faculty of Energy Systems and Nuclear Science (cross-appointed to the university’s Faculty of Engineering and Applied Science), says the process will allow nuclear plant operators to truly understand potential fault possibilities and how best  to prevent them.

Dr. Gabbar and students have been developing computer models that use real-time utility data and simulate problems, or “faults,” at nuclear power plants.

This model-based approach can be implemented in parallel with a real plant. It is expected to enhance system performance by improving plant safety.

“This will enable operators like OPG and Bruce Power to actually model the fault and model the problems in critical equipment and identify what are the protection barriers or layers and what is the probability of different faults,” Dr. Gabbar said.

“It will allow operators to have a better understanding of actual fault propagation scenarios and will link these fault scenarios into safety protection layers to overcome any fault propagation scenario.”

Dr. Gabbar and his students have done a number of case studies that simulate things such as steam generation faults and steam pressure faults.

Canada’s nuclear power operations have a proven track record of being among the safest in the world. They are highly monitored, stringently regulated and continuously improved through the daily efforts of qualified professionals who are committed to ensuring public safety.

In keeping with the industry’s philosophy of continuous improvement, new methods and enhancements to existing methods are being developed in the areas of systems analysis, accident causation, human factors, error reduction and measurement of safety performance.

Using Fault Semantic Network (FSN) for troubleshooting faults in CANDU reactors will only build on the current knowledge and improve safety in the future.

Uncategorized

Terrestrial Energy Says Molten Salt is the Future of SMR Technology

IMSR core sizes
IMSR core sizes.

Terrestrial Energy is on the path to commercializing its Integral Molten Salt Reactor (IMSR), which it says holds the greatest promise as an alternative to conventional energy sources.

“We believe we have a technology that is ideal for the small modular reactor market,” said Simon Irish, chief executive of Terrestrial Energy, based in Toronto. “We believe our technology will provide industry with a small modular reactor that provides power which is simply more convenient and more cost competitive than using coal.”

Global energy demand will grow substantially over the next generation, driven primarily by population growth and industrialization in Asia. Many countries seek secure, cost-competitive energy sources that avoid the climate-changing greenhouse gases generated by coal, natural gas and oil.

IMSR plant
IMSR plant.

“The need for game-changing innovation is far, far stronger this decade than decades before,” said Irish. “We face many problems identifying secure, safe and economically competitive energy supplies over the next two decades. Solving that problem with existing approaches is probably not practical.”

The molten-salt reactor system differs fundamentally from today’s water-cooled commercial reactors. Instead of using solid uranium as fuel, it dissolves the uranium in liquid salt mix. Irish said the technique gives the molten-salt reactor a unique safety profile.

“You can’t lose primary coolant because your fuel and your coolant are one and the same,” Irish explained, “and they are not under pressure as they are in traditional solid-fuel reactors.  The IMSR system is passively safe – meaning safety is assured even in the absence of backup power.”

IMSR section view
IMSR section view.

Although the molten-salt reactor is not yet commercially available, it uses a recognized, proven nuclear technology demonstrated in the late 1950s to the 1970s by the illustrious Oak Ridge National Laboratory in Tennessee.

The trick is to change a working laboratory reactor into a reactor suitable for industry – and that’s where Innovation comes in.

Building on the Oak Ridge demonstrations, Terrestrial Energy has developed a reactor system that appears simple, safe to operate, convenient and highly cost effective for industry.  It could enter service early next decade.

“The first step on our path to commercialization involves the manufacturing and construction of our first commercial reactor at a site in Canada, and obtaining a license to operate it from the CNSC,” explains Irish. “We intend to have it up and running and connected to the grid by early next decade.”

Uncategorized

CNL Invests in Hydrogen to Power the Future

Hydrogen laboratory at CNL
Hydrogen laboratory at Canadian Nuclear Laboratories (CNL).

Imagine a world where driving to work is no more harmful to the environment than walking or cycling. Where the burning of fossil fuels is a distant memory of a bygone era, long before advances in alternative energy sources for transportation were developed and commercially viable.

The promising science behind hydrogen as an energy source to power our everyday lives is a prospect that has captured the imagination of Canadian Nuclear Laboratories (CNL) researchers, and prompted CNL to open a new lab at its site in Chalk River, Ontario.

Hydrogen laboratory at CNLCNL’s advantage in exploring future hydrogen applications stems from its six decades of experience with hydrogen isotopes such as deuterium and tritium. (Deuterium is the heavy hydrogen in the water used to cool fissioning uranium in CANDU nuclear reactors. It’s exactly like the regular hydrogen that bonds with oxygen to produce water, except it has a neutron – the extra weight that makes the water “heavy.” Likewise, radioactive tritium has two neutrons.)

Hydrogen laboratory at CNLCNL’s depth of experience is now being applied to exploring large-scale production of hydrogen using technology that can be integrated with nuclear energy. Essentially, this technology would use surplus electricity – either nuclear or renewable – as the clean form of energy needed to produce this resource.

Where could it lead? The “hydrogen economy,” perhaps.  Hydrogen is a low-carbon energy source that someday could replace gasoline for transportation or natural gas for heating. Hydrogen is attractive because the only by-product from its use is water – the regular kind. The bottom line: no harmful emissions to the environment whatsoever.

Hydrogen laboratory at CNLIn opening his company’s $55 million lab in January 2015, CNL President & CEO Dr. Robert Walker said, “This new laboratory will enable state-of-the-art research to ensure a clean and healthy environment for Canadians through the development and use of clean energy technologies.”

“The work that will be carried out within these walls builds on CNL’s global leadership position in hydrogen technologies. It enables us to develop safe and secure options for Canada’s future energy needs. And it gives us the foundation to leverage and direct our capabilities into other industry sectors and international markets.”

Hydrogen laboratory at CNLThe new lab’s equipment comes from other innovative Canadian nuclear companies such as Kinectrics, TurnKey Modular Systems, Tyne Engineeringand Angstrom Engineering. Each piece of equipment enables an experimental process to measure the performance of a chemical or physical transformation involving hydrogen. For example, one of the rigs measures the rate at which hydrogen reacts with oxygen at various conditions using different catalytic materials.

CNL’s hydrogen lab is an excellent example of Canadian strength in science and technology, and a product of Canada’s work to explore civilian applications for nuclear technology.

Uncategorized

Nuclear Imaging Revolutionizes Breast Cancer Research

Editorial - Breast cancerInnovative nuclear research may soon be able to tell in advance whether breast-cancer patients require specific hormone treatments – a breakthrough that could save a lot of time and money.

Scientists at the University of Saskatchewan, supported by the Sylvia Fedoruk Canadian Centre for Nuclear Innovation  is exploring whether radiopharmaceuticals can identify cancers associated with HER2, a protein that promotes cancer-cell growth.

HER2-positive breast cancers are less responsive than other cancer types to hormone treatment. Drugs like trastuzumab (Herceptin) and  lapatinib (Tykerb) are effective but costly. Other treatments get used first – and may not work.

The Fedoruk research, if successful, would help doctors to identify HER2-positive cancer more readily and to prescribe effective treatment – saving time, money and lives.

Dr. Humphrey Fonge, an adjunct professor in the Department of Medical Imaging at the University of Saskatchewan, is leading the research that will better identify the protein, or biomarkers, on therapy-resistant cells, like HER2.

“When a patient goes to a clinic, they would get injected with a radiopharmaceutical that would more accurately tell which protein is responsible for that cancer and that would allow the physician to more accurately determine treatment to a particular drug rather than a one-size-fits-all method,” he said.

The research is still in the animal-testing phase. Humphrey estimates it will take a “few years” before it goes to Health Canada for approval.

“It’s going to be revolutionary. It will save a lot of costs. If a patient goes to a clinic and is treated with a $70,000 drug and they don’t respond to drug, that’s a loss of $70,000.”

Not only will the imaging agent help to determine which drug therapy should be used, but it will also be able to monitor how patients respond to that therapy.

Neil Alexander, executive director of the Saskatoon-based Fedoruk Centre, said nuclear imaging is helping in cancer research as well in the fields of heart and brain research.

He calls it an area of expertise the Fedoruk Centre is developing through the Saskatchewan Centre for Cyclotron Sciences, which is leading to “great breakthroughs around the world.”

“The developments that are taking place in nuclear imaging will mean that our children will not be as terrified of diseases like cancer as we were because we will know so much more about them,” he said.

“Our ability to image them will give us that much more data both about the processes that cause cancer and how we can disrupt them and the ways that we can then treat them in order to minimize their consequences.”

Alexander said a large part of modern life would not be possible but for the development of innovative nuclear technology.

“The industry is hugely broad based and the innovations have led to the foundations of modern society,” he said.

Uncategorized

Nuclear Energy Delivers Clean Air for Ontario

Starting in the 1950s, coal made up a large part of Ontario’s power mix. Coal was inexpensive, and Ontario lacked sufficient alternatives such as hydroelectric power or natural gas. By the late 1990s, however, links between adverse health effects and air pollution were firmly established, and much of this could be traced to Ontario’s coal-powered plants.

In 2003, Ontario began to replace its coal-fired plants with nuclear energy, completing the switchover in 2014. Over that time, air quality improved significantly, reducing respiratory illnesses and deaths.

ONTARIO’S EVOLVING POWER CHOICES

Ontario’s first electrical power supply came from a hydroelectric generating station on the Ottawa River in 1892. Hydro expanded rapidly across the province in the early 20th century. But it could not expand indefinitely: not every river can be dammed at places that are economically feasible and environmentally sensible. So, in the 1950s, Ontario added six coal-fired power stations to meet rising demand. Practical, large-scale nuclear power was not introduced in Ontario until the 1970s.

Coal remained an important part of this mix until the end of the 20th century, when it made up about a quarter of electricity generation in the province. By that time, the health risks of coal were becoming increasingly apparent.

THE LEGACY OF COAL

As burners of carbon-based fossil fuels, Ontario’s coal-fired power plants were heavy emitters of greenhouse gases, which threaten to accelerate climate change. They also emitted pollutants that affect human health directly: mercury, several air-borne carcinogens, and sulphur dioxide, which can make asthma symptoms worse. Sulphur dioxide can also react with other substances to create particulate matter – small solids or liquid drops in the air that can damage lungs.

Burning coal also releases nitrogen oxide, which contributes ground-level ozone, a principal factor in smog, which has a devastating effect on public health.

In Toronto, airborne particulate matter commonly exceeded 20 μg/m3, the level at which adverse health effects can be demonstrated. It sometimes reached 75 μg/m3. Ground-level ozone often exceeded 80 parts per billion, far higher than the level of 31 ppb associated with increased hospitalization rates for asthma, lung disease, and respiratory infections.

The province attributed 1,800 premature deaths and 1,400 cardiac and respiratory hospital admissions each year to smog. Several studies and reports had also highlighted the connection between Ontario’s air quality and public health.

  • In 2004, Toronto’s health department estimated that 1,700 Toronto residents died prematurely and 6,000 Torontonians were admitted to hospitals because of air pollution each year.
  • A 2005 report by the Ontario Ministry of Energy concluded that coal contributed to 928 hospital admissions and 1,100 emergency-room visits each year.
  • In 2005, a report by the Ontario Medical Association identified several other costs of air pollution, including at least $150 million in additional healthcare costs, $128 million in lost productivity, and a total of $2.4 billion in economic damage.

Ontario's supply mix - 2000 vs. 2013 (2)CHANGING THE MIX

Pressure was building to improve air quality. In 1999, the Ontario Public Health Association called on the province to replace its coal-fired power plants with cleaner power sources. The Ontario Medical Association had already declared an air pollution crisis.

Phasing coal out

In 2007, the Government of Ontario adopted the Integrated Power System Plan, guiding the province’s energy choices over 20 years. The plan aimed to stabilize prices, double renewable energy, and increase conservation. Its central goal was to replace toxic coal with cleaner power.

Ontario closed four coal-fired plants in 2010, and the last one in 2014 – making Ontario the first jurisdiction in North America to shut down coal-fired generation.

Phasing nuclear in

Even with the conservation measures set out in the plan, Ontario would have to supply electricity to make up for the closures of the coal-fired plants. Hydro was not an option, as Ontario had reached nearly 75% of its hydro capacity. Renewables such as wind and solar showed promise – and the plan aimed to double their use – but represented only tiny fraction of Ontario’s power supply, and could not be scaled up easily. Furthermore, solar and wind do not produce steady power around the clock, which is necessary to prevent brownouts.

The Government of Ontario recognizes nuclear power as a reliable and safe supplier of electricity. Since 2003, investment in Ontario’s power infrastructure has modernized three reactors (Pickering A Unit 1 and Bruce Units 3 and 4) and returned them to service. Nuclear power, which made up 37% of Ontario’s power mix in 2000, stood at 62% in 2014.

AIR POLLUTION: HOW ONTARIO’S POWER MIX STACKS UP

Any change in the power mix has environmental consequences – which leads Ontarians to ask whether the transition from coal to nuclear power might simply involve changing types of air pollution.

To answer this question, it is important to look at a power plant’s emissions from cradle to grave – including its construction, its fuel source, its waste products, and its eventual shutdown and decommissioning.

Smog factors

All methods of power generation emit particulate matter and contribute to ground-level ozone. However, nuclear energy emits far less particulate matter per unit of electricity than any fossil fuel – and less than wind.

Greenhouse gases

Greenhouse gas emissions by nuclear power are surprisingly low, considering the amount of construction needed to build a nuclear power plant. But those plants operate for decades, and emit no greenhouse gases while generating electricity.

And because of the vast amount of power that can be extracted from a small amount of uranium (20,000 times that of coal, by weight), emissions from nuclear power compare favourably with renewable energy sources, and are well ahead of fossil fuels.

Carbon emissions per kWh

CLEANER AIR, TODAY AND TOMORROW

Today, Ontarians enjoy cleaner air. According to the provincial government, “Ontario’s air quality has improved steadily since 1988. We have good air quality approximately 90 per cent of the time.” With the exception of a spike in 2012, which included a serious drought, the number and duration of smog advisories across the province has dropped steadily since 2003.

Cleaner air means better health. In Toronto, premature deaths attributed to air pollution dropped from 1,700 to 1,300 between 2004 and 2014, while hospitalizations fell from 6,000 to 3,550.

Even with this progress, there is still much room for improvement – especially as Ontario’s population ages and more people are at higher risk of health effects from air pollution. And, as the economy grows, Ontario will need a reliable, clean-air power source that keeps prices stable and affordable. Nuclear power can meet this need, partly because Canadian-designed reactors can be refuelled without shutting down, and because they draw from a fuel source that is abundant in Canada.

Recognizing this value, the province also put primary focus on nuclear energy in its 2013 Long-Term Energy Plan. It decided to upgrade and replace key components at the Bruce Power and Darlington sites, so they can continue to provide clean power for decades.

Uncategorized

Why Ontario Needs Nuclear

The following infographic shows the rationale for using nuclear energy in Ontario. Simply put, Ontario is the second largest energy polluter in Canada, and nuclear is the only reason the province isn’t worse off. Among the clean energy options, nuclear is one of the most affordable, and it’s readily available.

The seven points below make it clear why Ontario needs nuclear.

Why Ontario Needs Nuclear - Infographic