Tag Archives: alzheimer’s

Uncategorized

Highlighting the Need for Nuclear

January 2017 was the third warmest January in over 100 years, according to scientists with NASA’s Goddard Institute for Space Studies. As the planet continues to warm, temperature increases continue to wreak havoc. A United Nations report on weather-related disasters pegged the cost of extreme weather events like floods, storms and droughts at close to 300 billion US dollars annually. The impact of the climate crises on communities has been echoed time and time again.

“In the long-term, an agreement in Paris at COP21 on reducing greenhouse gas emissions will be a significant contribution to reducing damage and loss from disasters, which are partly driven by a warming globe and rising sea levels,” according to former head of the United Nations Office for Disaster Risk Reduction (UNISDR), Margareta Wahlstrom.

The impacts of climate change go far beyond the thermometer. Rising temperatures and erratic weather patterns will make the viability of growing and feeding an expanding world population even more challenging as stressed by the Food and Agriculture Organization (FAO) of the United Nations.

Then there are health impacts of these environmental changes. The Canadian Cancer Society recently set off alarms following the release of a report that stated that nearly half of all Canadians, 1 in every 2 people, will be diagnosed with some form of cancer in their lifetime.

But among all the chaos of melting ice caps, increasing cancer rates and concerns over global food supply, there lies a solution in an atom. One energy source, that alone, can provide solutions to some of the world’s most pressing problems: nuclear energy.

Canada’s history with nuclear power dates back to the 1970s when the Pickering nuclear generating station came online. The benefits of nuclear power across Canada, and specifically in Ontario, have been profound. It is reported that 45 million tons of carbon dioxide is avoided every year, making nuclear one of the most important contributors to clean air in the province.

The public health impacts of carbon emissions have been well documented by Health Canada and others who have cited an increased risk for cancer, heart attack and stroke as a result of poor air quality. In fact, the Asthma Society of Canada stated that, “asthma exacerbations due to air quality have decreased thanks to carbon-free options such as nuclear, hydroelectric and renewables.” A statement that should come as no surprise when one considers that turning off the switch to coal fired electricity generation in Ontario meant reducing carbon emissions by a staggering 87%.

The importance of nuclear energy was highlighted by the International Energy Agency (IEA) in a recent article by Reuters that stressed the interconnectedness between meeting climate targets and investments in nuclear power. Without nuclear, climate targets could fall short by decades.

Then there are the other benefits. Nuclear science, has enabled huge leaps forward in medicine.  Through work with isotopes and Cobalt-60, a key ingredient in nuclear medicine, doctors can improve the quality and save the lives of millions of patients – from the diagnosis and treatment of cancers to treating other diseases and afflictions such as Alzheimer’s.

Nuclear science is also addressing pest populations and making plants more resilient to climate change, thereby protecting the agriculture lands we need to sustain a growing population.

Nuclear science and nuclear energy can address several the global challenges including the challenge of providing large amounts of power to communities without the high price tag. Nuclear power, while reducing carbon emissions is also cheaper than most other renewable energy sources.  The latest data released by the Ontario Energy Board in their Regulated Price Plan Report, shows that the cost for nuclear power is the second cheapest next to hydro; making nuclear a viable baseload (can run day or night) clean and affordable option for communities.

From fighting food insecurity to providing a low-cost and clean energy solution, further investments in nuclear are needed if we are to win the war on climate change and ensure a more sustainable future for all.

Uncategorized

Nuclear Science: Mapping Out Alzheimer’s

Canadian women over 65 are at the greatest risk for developing dementia and that number is drastically rising. It is predicted that the number of Canadians living with dementia will almost double, affecting one million people by 2030. In the United States, a person is diagnosed with dementia every 66 seconds.

A large aging population and rising dementia rates are placing tremendous strains on an already stressed health care system, particularly long-term care facilities. Across the country, wait lists for long-term care varies from province to province but wait times in excess of a year are not unheard of. An overwhelming care demand coupled with a shortage of beds has meant many seniors are forced to stay at home longer.

Early diagnosis of Alzheimer’s is an important step in planning for both patients and their families. A step that is closer to reality thanks to nuclear science and the stable isotope labeling kinetics (SILK) technique.

Inside your brain’s nerve cells are tau proteins. These proteins work to stabilize other proteins in the brain known as microtubules. These microtubules are responsible for cell structure and movement.  New findings from the  Washington University’s School of Medicine in St. Louis this past spring reveal the importance of tau proteins in early Alzheimer’s progression.

“Tau is abundant in the brain’s nerve cells, where it stabilizes the scaffold-like microtubules that play a critical role in transporting cargo within cells. But in Alzheimer’s disease as well as other “tauopathies,” such as progressive supranuclear palsy and frontotemporal dementia, clumps of tau protein are abnormally deposited in nerve cells in tangles.”

In order to assess the health and levels of tau protein a patient is given a stable isotope of amino acids and then through a positron emission tomography (PET) scan, the amount of labeled tau produced in the brain is measured. Knowing how much tau is produced, researchers can then calculate how fast the protein is produced and cleared away by the brain.

Research has shown brains that are prone to dementia tend to have a buildup of dysfunctional proteins and have a harder time clearing the excess proteins away compared to brains of healthy patients. While it’s not a cure, this discovery could lead to new hope for patients and their families.

“Usually we can only diagnose patients later in the disease process, when brain function already is diminished,” according to senior author Beau M. Ances, MD, PhD, an associate professor of neurology.  “We want to develop ways to make an earlier diagnosis and then design trials to test drugs against amyloid buildup and against tau buildup. While we currently cannot prevent or cure Alzheimer’s disease, delaying the onset of symptoms by 10-15 years would make a huge difference to our patients, to their families and caregivers, and to the global economy.”

In addition to their work on tau proteins, the school was recently awarded $4.3 million dollars from the Alzheimer’s Association to expand an international clinical trial which will attempt to identify drugs that can slow down or prevent Alzheimer’s in patients who are genetically predisposed but are symptom free. Working towards a cure and improving the lives of patients around the world, thanks in part to nuclear science.

Uncategorized

Radiopharmaceuticals and Disease Diagnosis

Nuclear medicine, already well-established in cancer diagnostics and treatment, has started to play a role in other diseases, like Alzheimer’s.

Doctors are using medications that contain radioactive materials so they can get an inside look at how your body operates. Patients receive these radiopharmaceuticals by injection, or by inhaling or swallowing the medication.

pharmaceuticalslabRADIO

As oncologist Sandy McEwan explains, “It circulates and binds at the site of the target and then we measure the distribution of the injection in space or time to understand what changes or functions are occurring.”

Dr. McEwan is a professor and chair of the department of oncology at the University of Alberta’s Cross Cancer Institute in Edmonton. He is also a member of the Canadian Nuclear Safety Commission, the independent nuclear regulator.

Dr. McEwan says advances in nuclear medicine are growing thanks to strong and active research and development.

The U.S. Food and Drug Administration (FDA) recently approved the use of radiopharmaceuticals to help evaluate patients for Alzheimer’s disease and dementia.

Advances are also being made in other areas such as cancer behaviours, according to Dr. McEwan.

“Tumors tend to use more glucose or sugar than regular cells,” Dr. McEwan says. “Using radiopharmaceuticals, doctors can measure how much glucose is being used by a tumor. The more sugar used by the cancerous cell, the worse the tumor is.”

These new medicines aren’t just used for diagnoses. Their very nature allows doctors to tailor them to individual patients.

“It’s personalized medicine,” says Dr. McEwan. “The right dose of the right drug, at the right time, for the right patient.”