Tag Archives: Bruce Power

Uncategorized

CNA a proud signatory to Equal by 30

The Canadian Nuclear Association is proud to be a signatory to Equal by 30, along with our members Bruce Power, Ontario Power Generation and Canadian Nuclear Laboratories.

Equal by 30 commits Canada and other participating countries to the goal of achieving equal pay, equal leadership and equal opportunities by 2030 in the energy sector.

CNA President John Barrett was on hand for the launch of the campaign at this year’s Clean Energy Ministerial (CEM) in Copenhagen, Denmark.

Check out the new Equal by 30 website to learn more about the importance of gender equality in the clean energy sector.

Uncategorized

Climate Action, Clean Energy and the Case for Nuclear

By John Barrett
President and CEO
Canadian Nuclear Association

Originally published by Policy Magazine.

With more and more countries struggling to meet the emissions goals set out in the 2015 Paris Agreement, it makes sense to consider all the low-carbon options at our disposal. Canadian Nuclear Association CEO John Barrett makes the case, ahead of the G7 in Charlevoix, for an approach that includes a renewed focus on nuclear energy. 

As world leaders gather in Charlevoix, Quebec, this June for the 2018 G7 Summit, the agenda will focus on concrete solutions to global challenges that extend far beyond the borders of these seven countries. Climate change and clean energy will be front and centre. What does Canada have to offer in leadership and real solutions?

Canada and France are leading the way in clean energy generation in the G7 and this is due in part to major investments in low-carbon, affordable nuclear power. In fact, according to a recent report by Natural Resources Canada, Canada’s electrical system is 80 per cent free of greenhouse gas emissions, second only to France out of all G7 nations. Furthermore, thanks to investments in clean energy, Canada’s overall GHG emissions profile went down by a few percentage points in recent years even as the economy grew. 

This is important because time to meet international climate change targets is running out. 

The International Energy Agency’s first Global Energy and CO2 Status Report found global carbon emissions hit a record high in 2017, after three years of being flat. In Canada, a joint audit, conducted by federal Environment Commissioner Julie Gelfand and auditors general in nine provinces, found Canada was not on track to meet its 2020 or 2030 greenhouse gas emission targets. 

Investments in clean and affordable energy aren’t just about reducing emissions, they are the foundation to ensuring access to jobs, health-care and education. Clean and cheap energy is necessary to lift communities out of poverty while ensuring environmental protection. Without proper electricity, countries suffer. As the World Bank reported, “one-quarter of the world population have no access to electricity. In the absence of vigorous new policies, 1.4 billion people will still lack electricity in 2030.” 

And, according to the World Health Organization (WHO), seven million people die every year from air pollution. The challenge is to produce policies and investments to transition to a lower-carbon economy. And to help other countries, where appropriate, to acquire the technology and materials for generating electricity from low-carbon sources. 

Some propose single solutions based on a preferred technology. Single answers to complex problems invite false hope for technologies that are today neither available nor proven effective when quantity, reliability and affordability are considered. This adds a considerable risk for huge costs as well as detrimental environmental impacts. 

For example, Germany’s Energiewende is a cautionary tale on why going green isn’t as easy as it sounds. Germany has shut down nuclear plants while making huge investments in wind and solar energy. However, its emissions have not declined. The new renewable energy has only offset the loss of nuclear—meaning that Germany has given up on meeting its 2020 emissions targets. Coal still represents 40 per cent of Germany’s electricity mix. At the same time, the cost of power over the last decade has escalated, rising by close to 50 per cent. 

This begs the question that, if we are really concerned about the impacts of climate change and if we really do need to ramp up energy production as a method of lifting people out of poverty and driving economic growth, why would we not include a low-carbon option such as nuclear power?

Instead of looking to Germany, look to Canada, especially the province of Ontario. Ontario is the real clean energy leader. 

Nuclear power is the main driver of Ontario’s almost zero-emission energy grid. The province is home to one of the largest investments in clean-energy nuclear on the planet. Nuclear provides the bulk of the electrical generation to the province; close to two-thirds of the energy supplied every day comes from the nuclear generating stations. 

Outside Ontario, New Brunswick has also demonstrated the benefits of nuclear to a clean and affordable electrical grid; displacing tens of millions of tons of carbon dioxide from the atmosphere. And thanks to the power of uranium from Saskatchewan, a pop-can sized amount of this rock is all the amount a person would need to power their lifetime; using a small amount of the Earth to create massive amounts of power.

The next generation in nuclear energy technology is already here. Natural Resources Canada is leading a mapping process under the Energy Innovation Program to explore the potential for on- and off-grid applications for small modular reactor (SMR) technology in Canada. Driven by interested provincial and territorial governments and energy utilities, the exercise will assess the characteristics of different SMR technologies and how they align with user requirements and Canadian priorities. The roadmap will be an important step for Canada to advance innovative, next-generation nuclear technologies and become a global leader in the emerging SMR market.

Meanwhile, the CANDU-reactor refurbishment program, supported by Ontario’s Long-Term Energy Plan, is underway and moving through the first phase at the Darlington Nuclear Generating Station on time and on budget. This program will replace major components and refurbish 10 reactors in total over the next 12 years at Darlington NGS and at Bruce Power’s site in Kincardine.  

This $26 billion program is the single largest clean-energy investment by any jurisdiction in the western hemisphere and possibly beyond. Moreover, it has unleashed creative juices, as both Ontario Power Generation and Bruce Power are encouraging innovation and advanced technology use at every step. Already there are important advances in robotics and control systems that will have application in other, non-power sectors of the Canadian economy.

Canada’s nuclear contributions to the G7 aren’t limited to energy. Nuclear science and technology has many proven benefits, meeting nine of the United Nations 17 Sustainable Development Goals. Nuclear reactors provide opportunities for water desalination to communities that experience water shortages. Desalinating water requires a tremendous amount of energy and nuclear can do it while releasing hardly any greenhouse gas emissions into the atmosphere.

Research and innovation in health care has helped to make Canada a world leader in the production of Cobalt-60, which is used in many areas of our health industry. Cobalt-60 is used in sterilization, diagnostics and treatments. This includes isotopes to help detect and treat diseases, new research into gamma therapy, and blasting tumor cells from the inside out and protecting healthy, surrounding tissues.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources)—a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

The next generation of nuclear technology will build on Canada’s track record of excellence, looking to recycle current spent fuel, developing reactors that can provide power and heat to communities and even hold the promise of carbon-free gasoline. 

Climate change and clean energy are two of the most pressing issues of our time. Canada has a real opportunity to continue to take centre stage on these issues. The facts still matter. If we are to achieve our climate targets, sustainably manage resources for future generations and provide the world with access to clean and cheap energy, then we need nuclear to be part of the mix. Recognizing this is an important step to bringing real solutions today, without waiting for technologies that are not here now. 

With time running out to meet greenhouse gas emission targets and to prevent climate change from increasing temperatures by two degrees Celsius—now is not the time to expect a silver bullet to appear or to rely on one technology over another. 

A more effective and realistic approach is to foster collaboration that makes the best use of all available solutions to create a low-carbon future, allowing the world to meet emission targets while avoiding the potentially catastrophic impacts of climate change. 

Thanks to nuclear’s role in our electricity mix, Canada and Ontario can show how it can be done.

Uncategorized

Being Prepared for the Unexpected: The Nuclear Industry is Disaster Ready

In 2011, one of the most powerful earthquakes ever recorded opened-up the sea floor and sent a wall of water rushing along the Japanese coast knocking out the Fukushima Daiichi nuclear power plant. Images of the devastation made international headlines and raised concern over the safety and preparedness of nuclear power plants in the event of a disaster.

Recently, the government of Ontario announced that it is updating the province’s nuclear response plan. It will have a very solid and impressive basis on which to build.

Although the risk of a tsunami-induced accident at Canada’s nuclear power sites is close to non-existent, being prepared for the unexpected has been at the core of the nuclear industry’s commitment to safety. In fact, within a year of the Fukushima accident, Canada’s nuclear operators took additional steps, including a full-scale emergency exercise that was hosted by Ontario Power Generation (OPG) at its Darlington operations. The exercise brought together emergency responders from all levels of government and OPG, to test accident readiness.

Safety is a crucial pillar of success, and that is why the industry continues to add new measures to existing emergency response plans. As one example, OPG installed flood barriers to protect low-lying equipment in the event of a severe weather disaster. During the Fukushima event, an explosion took place because of a buildup of hydrogen. So OPG installed passive autocatalytic recombiners to limit the risk of a buildup of hydrogen should a leak ever occur.

Bruce Power, Ontario’s other nuclear generator, has built upon its safety foundation post-Fukushima, making additional investments in a suite of back-up generators and fire trucks. A new Emergency Management Centre, equipped with its own back-up power supply was also set up, and last October Bruce Power hosted 500 people from over two dozen agencies to take part in a week-long emergency preparedness drill called Exercise Huron Resolve.

This week-long exercise involved various industry partners and government including The Ministry of Health and Long Term Care, The Ontario Provincial Police, The Ministry of Labour’s Radiation Protection Services and OFMEM’s Provincial Emergency Operations Centre, which is based in Toronto.

Outside of Ontario, in New Brunswick, the Point Lepreau nuclear plant recently conducted  two large-scale emergency response exercises. A two-day simulation, in 2015, was conducted in partnership between NB Power and New Brunswick’s Emergency Measures Organization and this past May the company teamed up with the Canadian Nuclear Safety Commission (CNSC) to run through security emergency response exercises.

It is important to point out that, prior to Fukushima, nuclear emergency response plans were already in place. In fact, the nuclear industry’s commitment to emergency planning has been in place since the operation of nuclear power plants began, over fifty years ago. Since that time, operators have continued to build upon best practices.

While the geography of Canada makes it highly unlikely that an earthquake and ensuing tsunami, like the one that swallowed the Japanese coast, could ever occur here, we know that we must invest and demonstrate our commitment to planning and preparing for the unexpected. Our people are our number one asset, living and working in the communities they serve. Keeping our communities safe isn’t just part of our job it’s part of our community responsibility. One that we take pride in.

Uncategorized

Canada 150: Nuclear Science and Your Health

When it comes to health care and medicine, nuclear science had made numerous accomplishments that have improved the lives of millions of people around the world. As Canada celebrates 150 years, we wanted to look back at some of our achievements.

In the late 1800s Dr. Harriet Brooks, Canada’s first nuclear physicist, discovered radon while at McGill University and worked in the lab of Dr. Marie Curie. Her work laid the foundation for nuclear physics and paved a pathway forward for women like Sylvia Fedoruk.

In the mid-1950s, Fedoruk and a team of researchers under the guidance of Dr. Harold Johns, became one of the first groups in Canada (the other was a team from London, Ontario) to successfully treat a cancer patient with cobalt-60 radiation therapy. Today, it is estimated that over 70 million people around the world have benefited from this treatment and cobalt-60 machines are still in use today.

The benefits and applications of cobalt-60 extend far beyond cancer treatments. The ability of cobalt-60 to effectively kill off even the tiniest of potentially harmful microbes makes it the perfect sterilization tool for medical equipment like gloves, gowns, IV bags, syringes and catheters. Medical-grade cobalt or High Specific Activity (HSA) cobalt-60, like the kind used by Feodurk and others, has been a foundation for cancer treatment for over 60 years. A recent partnership between Nordion and Bruce Power will ensure that cobalt-60 continues to be readily available for years to come.

Pioneers in medical isotopes over half a century ago, Canada led the world in the supply of isotopes, contributing to the betterment of global health. Used for the diagnosis and treatment of various diseases and illnesses such as imaging of the brain, lungs, heart and kidney, isotopes have been a key component to the health-care system have helped millions of people every year. The importance of isotopes is increasing. According to a recent report, the global market for nuclear diagnostic medicine is expected to double by 2020. Globally, over 40 million nuclear medicine procedures are performed every year.

Today, in the halls at TRIUMF in Vancouver, scientists are working on the next wave of cancer treatments through the exploration of alpha therapies. Through a targeted approach, cancer cells are blasted from the inside out, minimizing damage to healthy tissues. These alpha-emitting isotopes are thought to be especially effective for dealing with late-state or metastasized cancers (cancer that has spread from one part of the body to another).

In order to develop the necessary tools to diagnose and treat patients, an understanding of how our body functions at the cellular level is key. The community of St. Catharines, Ontario is home to Brock University.  There groups of scientists are looking to unlock the answers to some of the world’s most pressing health challenges by figuring out how our body works by peering inside our cells. Using a neutron beam and a very high-resolution microscope, you can look inside the tissues of cells without doing any damage. Thad Harroun is an Associate Professor at Brock University. He came to Canada in 2003 to work at the Canadian Neutron Beam Centre and has worked on numerous experiments to better understand the interactions inside our bodies. One of his recent projects involves a better understanding of cholesterol.

“We want to know how proteins in our cells interact with cholesterol and fats and we are looking to see how cholesterol supports cell membranes,” he said.

Once thought to be the enemy of our arteries, new research has highlighted the importance of cholesterol to both cellular and lung health. Harroun’s work has also explored the importance of Vitamin E to cellular health.

Leading edge cancer treatments today include Gamma Knife Radiosurgery. Contrary to its name (the procedure isn’t surgery and doesn’t involve a knife) beams of radiation, two-hundred in total, converge on cancerous cells to more effectively kill tumors while protecting surrounding healthy tissues and provides new hope for those dealing with brain tumors and lesions.

Our history with nuclear medicine is a storied and varied. As Canada marks its 150th birthday there are many reasons to be proud of our many achievements that will continue to benefit the lives of people around the world for generations to come.

Uncategorized

Deep Geologic Repository: A Matter Of Science

By: Dr. John Barrett
President & Chief Executive Officer
Canadian Nuclear Association

The recent CTV W5 segment on Ontario Power Generation’s proposed Deep Geologic Repository (DGR) in Kincardine, Ontario, left the impression that some opponents viewed the location of the project as a simple act of convenience.

It is not a matter of convenience but a matter of science.

The DGR project intends to store low- and intermediate-level nuclear waste deep underground. In public consultations regarding the DGR, and again in the W5 segment, there is a suggestion that OPG chose the Kincardine site for its convenience, while ignoring concerns that radioactive material might seep through the rock and contaminate Lake Huron.

This flies directly in the face of the 2015 report of the federal Joint Review Panel, which held more than 33 days of public hearings and reviews more than 12,500 pages of evidence. The Panel’s Environmental Assessment called the geology of the area “highly suitable.”

Here’s why.

The host rock under the Kincardine site is four times the strength of concrete, and it would take 1 million years for one molecule of water to pass one metre in this rock.

The rock was formed more than 450 million years ago. It has remained intact despite two mountain formations and nine ice ages. Above the host rock rests 200 metres of impermeable shale.

Taken together, the rocks of this unique formation provide a natural barrier that scientists from around the world agree is perfect for permanently and safely isolating waste.

While W5 painted a picture of a “town divided,” this is actually not accurate.

The DGR actually has broad community acceptance. The Municipality of Kincardine reaffirmed its support for the project as recently as this past February via a resolution passed by the municipal council. Similar expressions of support for the DGR were also passed by Bruce County, which comprises 8 municipalities, including Kincardine, and by Huron-Kinloss and Saugeen Shores.

Much of the low- and intermediate-level waste that DGR will store currently sits above ground at OPG’s Western Waste Management Facility, located at the Bruce Power site at Kincardine. Is keeping it there indefinitely the better choice?

The answer finds its roots in moral responsibility and in evidence-based science.

Since our generation benefitted from the use of nuclear-generated electricity, we also bear responsibility for the waste. Responsibility rests with us, not our grandchildren.
The DGR is based on rigorous science, not “convenience”. It is planned in ideal geology, with world-leading engineering. The federal Joint Review Panel reports states the DGR will perform its job for 1,000,000 years.

The Deep Geologic Repository provides a way to manage our responsibility safely and securely. It will be a lasting solution for the waste, ensuring peace of mind.

Uncategorized

ONTARIO’S NUCLEAR ADVANTAGE: LOW-COST ELECTRICITY, JOBS & GROWTH; HEALTH & CLEAN AIR

Ontario has a nuclear advantage. Yet many in the province don’t realize it or how much it benefits them and their everyday lives.
When we flick on the lights, turn on the computer, or charge electric vehicles, we give no thought to how our electricity is produced. We should take comfort in knowing that nuclear power is the backbone of Ontario’s electricity system.

Nuclear power provides families and businesses with a low-cost, safe, reliable source of electricity, and it makes our Energy Star appliances even cleaner when they run on low GHG-emitting Nuclear. For those who like solid facts: Ontario’s nuclear plants supply over 13,000 MW of clean power – or, about 60% of Ontarians’ needs every day of the week, every week of the year. What’s more, as Ontario’s electricity demand increases, with people turning to electric vehicles and the province growing in population and economic activity, nuclear power can expand to ensure our electricity stays clean.

When we think of the challenges of climate change, and the need for carbon-pricing, we do not automatically realize that nuclear power is virtually GHG-emissions-free. The clean electricity from nuclear generation is not impacted by cap-and-trade costs.

When we urge our governments to do something about the effects of climate change, we don’t always grasp that Ontario’s ability to end coal-fired generation was largely made possible by the return to service of two Bruce Power reactors, and the return to commercial operation of units 1 and 4 at Pickering.
The clean, smog-free air in parts of southern Ontario is a blessing to those with asthma or breathing problems. Today, Ontario has over 90% of its electricity powered by clean energy sources. Nuclear shoulders 2/3rds of that.

When we think of concerns about hydro bills, we often tend to lump all generation sources together. We assume they’re all equally to blame for producing expensive electricity. But that’s not the fact. Nuclear generation in Ontario is currently paid 6.6 cents/kWh compared to the average residential price of 11 cents/kWh, according to the Ontario Energy Board. And the power that’s bought by Ontarian consumers is reliable, not intermittent, and not dependent on the fluctuations of weather. Thankfully.

When we think of friends and family who have undergone treatment for cancer and when we assume that the medical equipment used around them is safely sterilized, we don’t say thank goodness for nuclear reactors. But we should. The reactors at Bruce Power and OPG’s Pickering plant produce 70% of the world’s Cobalt-60, used to attack cancer cells. Cobalt-60 is also used to sterilize gowns, gloves, implantable devices and syringes in hospitals in Ontario and around the world. What other energy sources treat cancer and save lives? Nuclear does.

When we think of high-tech, good-paying jobs for our families and children, we seldom look first to Ontario’s nuclear industry. But do Ontarians realize how many jobs are supported by the nuclear industry and how much communities benefit from having companies in the nuclear supply chain? The nuclear industry in Canada contributes over $6 billion annually to the economy and supports 60,000 direct and indirect jobs. Many of these are in Ontario, and they stay in Ontario because of the expertise and high-quality manufacturing and engineering skills required by the industry.

When it comes to innovation in advanced energy technologies, you only have to cite the potential of small modular reactors (SMRs) or the next generation of inherently safe reactors that recycle fuel to feel the excitement among the younger generation of scientists, engineers, environmentalists. They see increasingly what new innovations in nuclear can do to bring reliable, safe, emissions-free energy – in the quantities needed – to an energy-hungry world desperately wanting more. They will be the generation to deliver this extraordinary benefit to humanity.
Take all of these and add them up. What you get is Ontario’s incredible nuclear advantage. Time to recognize this and capitalize on it. Nuclear provides solutions to the pressing needs of today and tomorrow. Time to think afresh about nuclear and its contribution to growth, to the environment, to an innovative, clean energy future.

An opportunity for such thinking is the Ontario Government’s forthcoming Long-Term Energy Plan. This is where Ontario’s nuclear advantage is established, underpinned and presented imaginatively for the future.

For our part, the Canadian Nuclear Association (CNA) is proud to launch a new website that promotes fact-based awareness and understanding of Canada’s nuclear success story: www.ontariosnuclearadvantage.com Ontario’s world-class nuclear sector is something of which Ontarians and all Canadians should be proud.