Tag Archives: CANDU

Uncategorized

Nuclear – Canada’s Clean Energy Future

When it comes to meeting the needs of global climate change mitigation efforts, nuclear technology plays an important role.

Partnering with other counties, our nuclear industry can help contribute to affordable and clean energy around the world, including countries such as Argentina, China, South Korea, Romania and India. Our industry’s investments in innovative nuclear technology have the capacity to provide a clean source of energy to remote communities, resource extraction sites and provincial electricity grids and provide desalination options. Canada’s nuclear future is clean, competitive and able to provide power to much needed communities while contributing in the fight against climate change.

For our part, Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources).  Uranium alone from Cameco, Canada’s largest uranium mining company, powers 1 out of every 18 homes in the United States and 1 of every 10 in Canada.  This represents an enormous amount of avoided GHG emissions.  Thanks to Canadian CANDU technology, our nuclear reactor fleet provides clean, affordable and low-carbon energy, powering approximately 60% of Ontario’s electricity needs and one-third of New Brunswick’s.

The federal government’s recent Mid-Century Long-Term Low-Greenhouse Gas Development Strategy included nuclear in all its models for achieving drastic GHG emission reductions by 2050.  Earlier, at COP21 in Paris, Canada joined 21 countries plus the European Union to create Mission Innovation, a pledge to double national investments in clean energy innovation over five years.

The UN’s Intergovernmental Panel on Climate Change (IPCC) in 2014 recommended tripling the amount of energy use from renewable energy and nuclear power to keep climate change within two degrees Celsius.  Meanwhile, in its 2016 World Energy Outlook scenario, the International Energy Agency (IEA) said limiting the increase in global temperatures to less than 2⁰ C would require global nuclear generation to increase by almost two-and-a-half times by 2040.

If mitigation pathways are to be on target, keeping a global temperature rise limited to 1.5 degrees while simultaneously staying on course to meet the 17 UN Sustainable Development Goals (SDGs), the international community must continue to promote and invest in low-carbon technologies, including nuclear.

Important breakthroughs are coming in the area of advanced reactor technology and more efficient fuels that will have exciting domestic and global applications. Hydrogen fuels, molten salt reactors and fusion energy are a small sample of the next generation of nuclear powered technologies.

Nearly all the value chain in our nuclear sector comes from, and belongs to, Canada – from mining to innovative reactor technology, all the way through to eventual decommissioning, giving Canada a highly valuable and skilled clean-tech workforce.

We need public policy-makers to support access to sufficient financing for Canada’s clean technology exports.  Important breakthroughs are coming in the area of advanced small reactor technology that will have exciting domestic and global applications.  This opportunity combines global growth potential with a climate-friendly technology.  Canada can have a competitive edge here, given timely policy and financing support. Our nuclear industry has the potential to provide more than just clean energy but affordable and sustainable options for Canada and internationally.

CNA Responds

CNA response to “Nuclear energy isn’t ‘clean'”

Re: Nuclear energy isn’t ‘clean’ (Winnipeg Free Press, April 25)

Dave Taylor’s opinion piece declaring nuclear neither clean nor the future ignores the reality of decarbonization at the national and global level.

In April of 2014, the UN’s Intergovernmental Panel on Climate Change recommended tripling the amount of energy use from renewable energy and nuclear power to keep climate change within two degrees Celsius.

The International Energy Agency in their 2016 World Energy Outlook predicted a requirement for global nuclear generation to increase by almost two and a half times by 2040.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources) – a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

Globally, nuclear power is on the upswing. According to the World Nuclear Association, there are 60 nuclear reactors currently under construction worldwide, with another 157 on order or planned, and 351 that have been proposed.

Unlike some other sources of energy, nuclear does not release its waste into the atmosphere. Spent fuel is safely stored and relies on sound science and technology. Through the Nuclear Waste Management Organization, Canada has a plan for the safe, long-term management of used nuclear fuel that is fully funded by nuclear operators in Canada.

Finally, contrary to Taylor’s statement regarding the futility of Canada’s reactor sales, it should be noted that Canada has actually sold 12 CANDU reactors to China, India, Romania, Argentina and South Korea.

John Barrett
President and CEO
Canadian Nuclear Association

Uncategorized

Celebrating Canada 150: Nuclear Science and Innovation

From the birthplace of Confederation, Charlottetown, to the home of the nation’s capital, Ottawa, the fireworks send off to mark Canada’s 150th birthday is only one in a series of celebrations to acknowledge the storied history of our country. As Canada officially celebrates a century and a half we wanted to look back the contributions that our nuclear scientists have made to our country and beyond.

The latest numbers from the Canadian Cancer Society predict that 2 out of every 5 Canadians will develop cancer in their lifetime. While cancer can target people at any age, people over 50 are at the greatest risk for developing some form of cancer. Over the years, numerous advancements have been made in the field of cancer research but the work done by a team of researchers in Saskatoon arguably paved the way for today’s cancer treatments.

Sylvia Fedoruk, a pioneer in the field of medical physics, was the only woman in Canada working in the field in the 1950s. Fedoruk was a member of a University of Saskatchewan team working on cobalt-60 radiation therapy. Under the guidance of Dr. Harold Johns, Fedoruk and others were the first group in Canada to successfully treat a cancer patient using cobalt-60 radiation therapy. Thanks to their pioneering work, over 70 million people around the world have benefited from this type of treatment. In fact, the benefits of cobalt-60 machines go far beyond the Canadian border as cobalt-60 radiation therapy machines have been used all over the world to treat cancer patients.

Building on the early work of scientists, advancements in nuclear medicine include the use of alpha therapies. Through a targeted approach, cancer cells are blasted from the inside out, minimizing the damage to healthy tissues. These alpha-emitting isotopes are thought to be especially effective for people that are dealing with late-stage or metastasized cancers (cancer that has spread from one part of the body to another) and could be the basis for the next wave of cancer treatments.

“It’s a magic bullet for people in the cancer field because it has the beauty of sparing healthy tissues and finding and weeding out tiny tumours,” according to Dr. Tom Ruth, Special Advisor, Emeritus, TRIUMF.

Clean, reliable and sustainable energy is one of the pillars of the United Nations Sustainable Development Goals. Canada’s nuclear industry is a driving force of the economy, contributing over 6 billion dollars to the country and employing over 60,000 people both directly and indirectly.

Our CANDU technology helped spur opportunities for power generation. The Pickering nuclear power plant came on line in 1971 just four years after Douglas Point came online. Ontario was the first province to introduce nuclear into its electrical generation, New Brunswick would soon follow suit in the early 1980s. The efficiency and cleanliness of nuclear allowed Ontario to reduce emissions and provide energy security following the province’s decision to axe coal from electrical generation in 2014, eliminating smog days from the province. It is estimated that thanks to nuclear power production in Ontario alone, 45 million tonnes of carbon is removed from the atmosphere, equal to 10 million cars.

Canada’s history with nuclear generation goes back over half a century ago, when a team of engineers in Montreal developed the first reactor known as the National Research Experimental (NRX) reactor. The NRX, which came on line in 1947, led the way for research into isotopes and positioned Canada as a world leader in supplying the much-needed medical material all over the world ever since.

Communities are at the very core of the nuclear industry and you don’t need to look further than Cameco to see the positive impacts that community partnerships have. For over twenty-five years, Cameco Corporation has partnered with communities across Northern Saskatchewan as the largest private employer of First Nations and Metis people in Canada.

“More or less our community can have a future. Because of our young populations we need to be more sustaining and more certain, and this is one of the things that industry has brought to us, a lot of hope,” states Mike Natomagnan, the mayor of Pinehouse Lake and a former Cameco worker.

Canada’s nuclear industry continues to serve as a model for leadership, using science to find solutions to real world challenges. Our commitment to sustainable development and economic well-being is equal to our commitment to research and innovation. Powering the next generation of space travel is just one of the missions that Ontario Power Generation (OPG) is investing in.

A partnership between Technical Solutions Management (TSM), Ontario Power Generation (OPG), Canadian Nuclear Laboratories (CNL) and the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) would support and augment the Department of Energy’s program to renew the production of Pu-238, allowing scientists to continue their exploration of our solar system and beyond.

“Our hope is to land a contract to expand the amount of Pu-238 that is available for space exploration,” stated Glen Elliott, Director, Business Development, Ontario Power Generation.

If approved, within five years, we could be ready to power future space ventures with Pu-238 partially produced in Canada. The concept would rely on a commercial reactor to produce the necessary isotope, specifically OPG’s Darlington reactor.

The future of nuclear science will continue to explore ocean health and the ecosystems that are vital to our food chain thanks to research and work with isotopes. Dr. Sherwood Lollar was recently appointed to the Order of Canada for her work in geochemistry looking at the movement of groundwater and tracking environmental contaminants.

Through innovation, we will welcome the next generation of reactors. These include SNC-Lavalin’s Advanced Fuel CANDU Reactor (AFCR) which takes the used fuel from light water reactors and repurposes it as new fuel for the CANDU, thus effectively recycling an important energy-rich waste stream, while reducing considerably the volume of CANDU reactor waste. The AFCR may shortly see the light of day in China.

The next generation also includes the development of small modular reactors (SMRs), ensuring an energy future that allows for healthier communities, removing diesel from the energy mix, continuing to cut back on greenhouse gas emissions and opening the door to cut carbon from the transportation sector through the development of hydrogen fuels. The heat potential locked in future reactors could provide opportunities for community agriculture production in the form of greenhouses, affording people healthier food regardless of where they live.

Our commitment to science and research holds the promise of continued advancements and leadership in health, the environment and energy. As we look back on the first 150 years of investments in nuclear science and technology, we are excited to see what the next 150 will bring and we are confident it will continue to build on a better tomorrow and a stronger Canada for all of us.

Uncategorized

Can Reactor Refurbishment be Done On Time and On Budget?

Editorial - on timeOntario’s nuclear reactors have provided affordable electricity to the province since 1971. Affordable and reliable, nuclear power has become the backbone of Ontario’s electricity system.

Today, over 60% of Ontario’s electricity is currently generated by its 18 operating reactors. So, it’s understandable that Ontarians might be concerned about where their electricity will come from when Ontario begins a new refurbishment project for 10 of its reactors in 2016. The reactors are near the mid-point of their expected lifespans, and it’s time for a major tune-up, to replace key parts and ensure safety and efficiency for decades to come.

A few reactors will be refurbished at a time over 15 years, to minimize the change to baseload electricity generation. But what if the refurbishments are delayed, and what happens if they go over budget? Will Ontarians experience brownouts, or have to pay more for electricity?

The record

The record for CANDU projects, gives a good indication of actual performance when dealing with large nuclear projects. Though first-of-a-kind builds of nuclear reactors in Canada and around the world had a reputation for going over budget and schedule, the Canadian nuclear industry has more than 60 years’ experience in designing, delivering, and operating them – and we’ve learned how to get the right people, skills, and materials together to make these projects work.

So, it should not be a surprise that the most recent new-build CANDU projects around the world have all been delivered on or ahead of schedule, and on budget:

  • In 1996, the Cernavoda Unit 1 reactor in Romania was delivered on budget and on schedule.
  • From 1997-99, three of the Wolsong reactors in South Korea were delivered on budget and on schedule.
  • In 2002 and 2003, the two Qinshan Phase III reactors in China were delivered under budget and ahead of schedule.
  • In 2007, the Cernavoda 2 reactor in Romania went into operation.

The skills, coordination and experience that made these projects successful will now be used in refurbishing the Darlington reactors in Ontario.

Off-ramps

The Ontario government has required assurance in the form of “off-ramps” in the refurbishment contracts. It can stop the work if it goes over budget or schedule, and look at alternatives. That’s an important incentive for the operators and contractors to respect the terms of the deal.

Nuclear Innovation

New SMR Association to Present on November 18

The Emissions-Free Energy Working Group, Canada’s new small reactor association, will make a
presentation on the margins of next week’s Annual General Meeting of the Organization of Canadian Nuclear Industries on Nov 18 in Ajax, Ontario.  This AGM is themed on Small Modular Reactors Development and Applications.

Here’s what EFEWG Chair Neil Alexander has to say about this event:

OCI is pleased to announce that the Emissions-Free Energy Working Group (EFEWG) has chosen to use the opportunity provided by the OCI AGM and conference on small reactors to hold a follow-up meeting of its own on the work it is doing.  All members of OCI are invited to attend. The meeting is free to members of OCI and CNA but organizations are asked to limit their attendance to one or two representatives.   The meeting will be of interest to SMR vendors, potential SMR operators, EPCs seeking to build SMRs, safety and licensing consultancies and other supply-chain organizations that may benefit from the development of this new industry that will be complementary to the nation’s CANDU expertise.

 The vision of the EFEWG, a not-for-profit industry association, is a flourishing small reactor industry in Canada and it is presently identifying what must be done to turn that vision into a reality.  In the first phase of its activities it is in a dialogue with regulators, both nationally and internationally, and other stakeholders with a goal of ensuring that a framework for regulation is in place that assures public safety and is appropriate for these new technologies. 

 The meeting will start at 10:00am and will be held in one of the board rooms at the Ajax Hilton Garden Inn.  Details will be provided at the conference. The meeting will include presentations by the Chairman of EFEWG, Neil Alexander, and its Executive Director, Roger Humphries, on the activities of EFEWG and will include discussion of work that is taking place by IAEA through its Innovative Reactors and Fuel Cycles (INPRO)  program.

Uncategorized

CNA Introduces Map of Nuclear Facilities

The CNA’s new map of nuclear facilities is here!

This fully interactive map displays all of the uranium mines and mills, research reactors, CANDU reactors and uranium processing plants across Canada.

The interactive components are numerous. Visitors can select which types of facilities they want to display, and whether or not the facilities are active, decommissioned or closed/shut down. They can also zoom in and out on any area of the map, and they can hover over any facility for additional information.

The map is fully functional on desktop, laptop, mobile and tablet.

Check it out at https://cna.ca/resources/map-timeline/.

Map of nuclear facilities