Tag Archives: Clean Energy

Uncategorized

Nuclear – Canada’s Clean Energy Future

When it comes to meeting the needs of global climate change mitigation efforts, nuclear technology plays an important role.

Partnering with other counties, our nuclear industry can help contribute to affordable and clean energy around the world, including countries such as Argentina, China, South Korea, Romania and India. Our industry’s investments in innovative nuclear technology have the capacity to provide a clean source of energy to remote communities, resource extraction sites and provincial electricity grids and provide desalination options. Canada’s nuclear future is clean, competitive and able to provide power to much needed communities while contributing in the fight against climate change.

For our part, Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources).  Uranium alone from Cameco, Canada’s largest uranium mining company, powers 1 out of every 18 homes in the United States and 1 of every 10 in Canada.  This represents an enormous amount of avoided GHG emissions.  Thanks to Canadian CANDU technology, our nuclear reactor fleet provides clean, affordable and low-carbon energy, powering approximately 60% of Ontario’s electricity needs and one-third of New Brunswick’s.

The federal government’s recent Mid-Century Long-Term Low-Greenhouse Gas Development Strategy included nuclear in all its models for achieving drastic GHG emission reductions by 2050.  Earlier, at COP21 in Paris, Canada joined 21 countries plus the European Union to create Mission Innovation, a pledge to double national investments in clean energy innovation over five years.

The UN’s Intergovernmental Panel on Climate Change (IPCC) in 2014 recommended tripling the amount of energy use from renewable energy and nuclear power to keep climate change within two degrees Celsius.  Meanwhile, in its 2016 World Energy Outlook scenario, the International Energy Agency (IEA) said limiting the increase in global temperatures to less than 2⁰ C would require global nuclear generation to increase by almost two-and-a-half times by 2040.

If mitigation pathways are to be on target, keeping a global temperature rise limited to 1.5 degrees while simultaneously staying on course to meet the 17 UN Sustainable Development Goals (SDGs), the international community must continue to promote and invest in low-carbon technologies, including nuclear.

Important breakthroughs are coming in the area of advanced reactor technology and more efficient fuels that will have exciting domestic and global applications. Hydrogen fuels, molten salt reactors and fusion energy are a small sample of the next generation of nuclear powered technologies.

Nearly all the value chain in our nuclear sector comes from, and belongs to, Canada – from mining to innovative reactor technology, all the way through to eventual decommissioning, giving Canada a highly valuable and skilled clean-tech workforce.

We need public policy-makers to support access to sufficient financing for Canada’s clean technology exports.  Important breakthroughs are coming in the area of advanced small reactor technology that will have exciting domestic and global applications.  This opportunity combines global growth potential with a climate-friendly technology.  Canada can have a competitive edge here, given timely policy and financing support. Our nuclear industry has the potential to provide more than just clean energy but affordable and sustainable options for Canada and internationally.

Uncategorized

Nuclear Science, Climate Change & Sustainable Development: An Idea Worth Sharing

The fury of the Atlantic was on full display in late summer and early fall as hurricanes lined up to batter the Atlantic coast. Harvey, Irma and Maria knocked out power to millions of people and left communities in ruins. The power of Irma destroyed or damaged almost all the buildings on Barbuda, forcing the entire island to be abandoned. Meanwhile the force of Maria was enough to knock out power to all of Puerto Rico and citizens could be in the dark for months.

The Geophysical Fluid Dynamics Laboratory, part of the National Oceanic and Atmospheric Administration (NOAA), recently reported that ocean warming, resulting from climate change could have direct impacts on future hurricanes.

“Anthropogenic warming by the end of the 21st century will likely cause tropical cyclones globally to be more intense on average (by 2 to 11% according to model projections for an IPCC A1B scenario). This change would imply an even larger percentage increase in the destructive potential per storm, assuming no reduction in storm size.”

It’s not just through hurricanes that we see the direct impacts of climate change on human life. Climate change plays a huge role in access to food, water, health and the environment. As such, it is one of the contributing factors affecting sustainable global development. There are other factors to be sure. Together however, they condemn large parts of the world to poverty, underdevelopment, poor health amid a deteriorating environment. So, what to do?

To make life better for both developed and developing countries, the United Nations, in partnership with the global community, set out seventeen Sustainable Development Goals. These goals focus on meeting our needs today without compromising our future.

Thanks to uranium atoms, we can provide the necessary power to help lift people out of energy poverty, provide clean drinking water and help protect the environment, thereby bettering the lives of billions of people around the world. Nuclear science meets NINE of the seventeen sustainable development goals.

2 Zero Hunger:  Using nuclear science to alter the DNA of plants is a proven effective method to make them more resilient to climate change and is in use by 100 countries.

3 Good Health And Well-Being: A nuclear by-product, Cobalt-60, plays an important role in nuclear medicine. Low-grade Cobalt-60 is used to sterilize medical equipment such as syringes and catheters. High-Speed Activity (HSA) or medical-grade Cobalt-60 is widely used to treat cancer patients. Over 70 million people have been treated thanks to nuclear science.

6 Clean Water And Sanitation: Nuclear science using electron beams (e-beams) can break apart chemical bonds. China, the world’s largest textile industry, recently opened-up an e-beam wastewater treatment facility to treat and reuse wastewater used in clothing manufacturing.

7 Affordable And Clean Energy: According to IAEA projections, energy demand will rise by 60-100% by 2030. To help lift people out of poverty and realize the climate goals set out in Paris, low-carbon, cheap energy is needed. According to the Ontario Energy Board, in 2016, nuclear cost just under 7 cents per kilowatt hour, making it one of the most cost-effective, clean sources of energy. (Solar costs 48 cents per kilowatt hour and hydro 6 cents.)

9 Industry, Innovation And Infrastructure: Innovation in nuclear technology includes Generation IV reactors, hydrogen fuels, small modular reactors (SMRs) and fusion energy.

13 Climate Action: Globally, nuclear power avoids 2.5 billion tonnes of CO2 emissions every year, equal to taking approximately half of all (520 million cars) off the world’s roads. Nuclear power is the largest non-hydro source of low-carbon, clean energy worldwide, providing almost 12% of global electricity production.

14 Life Below Water: Nuclear science techniques that use radioisotopes can diagnose the impacts of ocean acidification on the food chain, giving scientists a better understanding of how rising acidity impacts both ecosystems and marine life.

15 Life On Land: Isotopes are a valuable environmental risk assessment tool as they can identify various contaminants which can help to assist with environmental monitoring and remediation of land areas.

17 Partnerships For The Goals: The global nuclear community has a long list of partnerships including various UN agencies such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO), universities and thank tanks and Indigenous communities.

While violent hurricane seasons are nothing new, the warming of our ocean waters, brought about by climate change, raise the concern that more catastrophic hurricanes, like the ones this season, could be the new normal. It’s just one example that underlines the importance of investments in sustainable science and technology, like nuclear, in order to keep the Earth on course to meet sustainable development goals today, ensuring a successful tomorrow.

Uncategorized

Climate Action, Clean Energy and the Case for Nuclear

By John Barrett
President and CEO
Canadian Nuclear Association

Originally published by Policy Magazine.

With more and more countries struggling to meet the emissions goals set out in the 2015 Paris Agreement, it makes sense to consider all the low-carbon options at our disposal. Canadian Nuclear Association CEO John Barrett makes the case, ahead of the G7 in Charlevoix, for an approach that includes a renewed focus on nuclear energy. 

As world leaders gather in Charlevoix, Quebec, this June for the 2018 G7 Summit, the agenda will focus on concrete solutions to global challenges that extend far beyond the borders of these seven countries. Climate change and clean energy will be front and centre. What does Canada have to offer in leadership and real solutions?

Canada and France are leading the way in clean energy generation in the G7 and this is due in part to major investments in low-carbon, affordable nuclear power. In fact, according to a recent report by Natural Resources Canada, Canada’s electrical system is 80 per cent free of greenhouse gas emissions, second only to France out of all G7 nations. Furthermore, thanks to investments in clean energy, Canada’s overall GHG emissions profile went down by a few percentage points in recent years even as the economy grew. 

This is important because time to meet international climate change targets is running out. 

The International Energy Agency’s first Global Energy and CO2 Status Report found global carbon emissions hit a record high in 2017, after three years of being flat. In Canada, a joint audit, conducted by federal Environment Commissioner Julie Gelfand and auditors general in nine provinces, found Canada was not on track to meet its 2020 or 2030 greenhouse gas emission targets. 

Investments in clean and affordable energy aren’t just about reducing emissions, they are the foundation to ensuring access to jobs, health-care and education. Clean and cheap energy is necessary to lift communities out of poverty while ensuring environmental protection. Without proper electricity, countries suffer. As the World Bank reported, “one-quarter of the world population have no access to electricity. In the absence of vigorous new policies, 1.4 billion people will still lack electricity in 2030.” 

And, according to the World Health Organization (WHO), seven million people die every year from air pollution. The challenge is to produce policies and investments to transition to a lower-carbon economy. And to help other countries, where appropriate, to acquire the technology and materials for generating electricity from low-carbon sources. 

Some propose single solutions based on a preferred technology. Single answers to complex problems invite false hope for technologies that are today neither available nor proven effective when quantity, reliability and affordability are considered. This adds a considerable risk for huge costs as well as detrimental environmental impacts. 

For example, Germany’s Energiewende is a cautionary tale on why going green isn’t as easy as it sounds. Germany has shut down nuclear plants while making huge investments in wind and solar energy. However, its emissions have not declined. The new renewable energy has only offset the loss of nuclear—meaning that Germany has given up on meeting its 2020 emissions targets. Coal still represents 40 per cent of Germany’s electricity mix. At the same time, the cost of power over the last decade has escalated, rising by close to 50 per cent. 

This begs the question that, if we are really concerned about the impacts of climate change and if we really do need to ramp up energy production as a method of lifting people out of poverty and driving economic growth, why would we not include a low-carbon option such as nuclear power?

Instead of looking to Germany, look to Canada, especially the province of Ontario. Ontario is the real clean energy leader. 

Nuclear power is the main driver of Ontario’s almost zero-emission energy grid. The province is home to one of the largest investments in clean-energy nuclear on the planet. Nuclear provides the bulk of the electrical generation to the province; close to two-thirds of the energy supplied every day comes from the nuclear generating stations. 

Outside Ontario, New Brunswick has also demonstrated the benefits of nuclear to a clean and affordable electrical grid; displacing tens of millions of tons of carbon dioxide from the atmosphere. And thanks to the power of uranium from Saskatchewan, a pop-can sized amount of this rock is all the amount a person would need to power their lifetime; using a small amount of the Earth to create massive amounts of power.

The next generation in nuclear energy technology is already here. Natural Resources Canada is leading a mapping process under the Energy Innovation Program to explore the potential for on- and off-grid applications for small modular reactor (SMR) technology in Canada. Driven by interested provincial and territorial governments and energy utilities, the exercise will assess the characteristics of different SMR technologies and how they align with user requirements and Canadian priorities. The roadmap will be an important step for Canada to advance innovative, next-generation nuclear technologies and become a global leader in the emerging SMR market.

Meanwhile, the CANDU-reactor refurbishment program, supported by Ontario’s Long-Term Energy Plan, is underway and moving through the first phase at the Darlington Nuclear Generating Station on time and on budget. This program will replace major components and refurbish 10 reactors in total over the next 12 years at Darlington NGS and at Bruce Power’s site in Kincardine.  

This $26 billion program is the single largest clean-energy investment by any jurisdiction in the western hemisphere and possibly beyond. Moreover, it has unleashed creative juices, as both Ontario Power Generation and Bruce Power are encouraging innovation and advanced technology use at every step. Already there are important advances in robotics and control systems that will have application in other, non-power sectors of the Canadian economy.

Canada’s nuclear contributions to the G7 aren’t limited to energy. Nuclear science and technology has many proven benefits, meeting nine of the United Nations 17 Sustainable Development Goals. Nuclear reactors provide opportunities for water desalination to communities that experience water shortages. Desalinating water requires a tremendous amount of energy and nuclear can do it while releasing hardly any greenhouse gas emissions into the atmosphere.

Research and innovation in health care has helped to make Canada a world leader in the production of Cobalt-60, which is used in many areas of our health industry. Cobalt-60 is used in sterilization, diagnostics and treatments. This includes isotopes to help detect and treat diseases, new research into gamma therapy, and blasting tumor cells from the inside out and protecting healthy, surrounding tissues.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources)—a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

The next generation of nuclear technology will build on Canada’s track record of excellence, looking to recycle current spent fuel, developing reactors that can provide power and heat to communities and even hold the promise of carbon-free gasoline. 

Climate change and clean energy are two of the most pressing issues of our time. Canada has a real opportunity to continue to take centre stage on these issues. The facts still matter. If we are to achieve our climate targets, sustainably manage resources for future generations and provide the world with access to clean and cheap energy, then we need nuclear to be part of the mix. Recognizing this is an important step to bringing real solutions today, without waiting for technologies that are not here now. 

With time running out to meet greenhouse gas emission targets and to prevent climate change from increasing temperatures by two degrees Celsius—now is not the time to expect a silver bullet to appear or to rely on one technology over another. 

A more effective and realistic approach is to foster collaboration that makes the best use of all available solutions to create a low-carbon future, allowing the world to meet emission targets while avoiding the potentially catastrophic impacts of climate change. 

Thanks to nuclear’s role in our electricity mix, Canada and Ontario can show how it can be done.

CNA Responds

CNA response to “Nuclear energy isn’t ‘clean'”

Re: Nuclear energy isn’t ‘clean’ (Winnipeg Free Press, April 25)

Dave Taylor’s opinion piece declaring nuclear neither clean nor the future ignores the reality of decarbonization at the national and global level.

In April of 2014, the UN’s Intergovernmental Panel on Climate Change recommended tripling the amount of energy use from renewable energy and nuclear power to keep climate change within two degrees Celsius.

The International Energy Agency in their 2016 World Energy Outlook predicted a requirement for global nuclear generation to increase by almost two and a half times by 2040.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources) – a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

Globally, nuclear power is on the upswing. According to the World Nuclear Association, there are 60 nuclear reactors currently under construction worldwide, with another 157 on order or planned, and 351 that have been proposed.

Unlike some other sources of energy, nuclear does not release its waste into the atmosphere. Spent fuel is safely stored and relies on sound science and technology. Through the Nuclear Waste Management Organization, Canada has a plan for the safe, long-term management of used nuclear fuel that is fully funded by nuclear operators in Canada.

Finally, contrary to Taylor’s statement regarding the futility of Canada’s reactor sales, it should be noted that Canada has actually sold 12 CANDU reactors to China, India, Romania, Argentina and South Korea.

John Barrett
President and CEO
Canadian Nuclear Association

Uncategorized

ONTARIO’S NUCLEAR ADVANTAGE: LOW-COST ELECTRICITY, JOBS & GROWTH; HEALTH & CLEAN AIR

Ontario has a nuclear advantage. Yet many in the province don’t realize it or how much it benefits them and their everyday lives.
When we flick on the lights, turn on the computer, or charge electric vehicles, we give no thought to how our electricity is produced. We should take comfort in knowing that nuclear power is the backbone of Ontario’s electricity system.

Nuclear power provides families and businesses with a low-cost, safe, reliable source of electricity, and it makes our Energy Star appliances even cleaner when they run on low GHG-emitting Nuclear. For those who like solid facts: Ontario’s nuclear plants supply over 13,000 MW of clean power – or, about 60% of Ontarians’ needs every day of the week, every week of the year. What’s more, as Ontario’s electricity demand increases, with people turning to electric vehicles and the province growing in population and economic activity, nuclear power can expand to ensure our electricity stays clean.

When we think of the challenges of climate change, and the need for carbon-pricing, we do not automatically realize that nuclear power is virtually GHG-emissions-free. The clean electricity from nuclear generation is not impacted by cap-and-trade costs.

When we urge our governments to do something about the effects of climate change, we don’t always grasp that Ontario’s ability to end coal-fired generation was largely made possible by the return to service of two Bruce Power reactors, and the return to commercial operation of units 1 and 4 at Pickering.
The clean, smog-free air in parts of southern Ontario is a blessing to those with asthma or breathing problems. Today, Ontario has over 90% of its electricity powered by clean energy sources. Nuclear shoulders 2/3rds of that.

When we think of concerns about hydro bills, we often tend to lump all generation sources together. We assume they’re all equally to blame for producing expensive electricity. But that’s not the fact. Nuclear generation in Ontario is currently paid 6.6 cents/kWh compared to the average residential price of 11 cents/kWh, according to the Ontario Energy Board. And the power that’s bought by Ontarian consumers is reliable, not intermittent, and not dependent on the fluctuations of weather. Thankfully.

When we think of friends and family who have undergone treatment for cancer and when we assume that the medical equipment used around them is safely sterilized, we don’t say thank goodness for nuclear reactors. But we should. The reactors at Bruce Power and OPG’s Pickering plant produce 70% of the world’s Cobalt-60, used to attack cancer cells. Cobalt-60 is also used to sterilize gowns, gloves, implantable devices and syringes in hospitals in Ontario and around the world. What other energy sources treat cancer and save lives? Nuclear does.

When we think of high-tech, good-paying jobs for our families and children, we seldom look first to Ontario’s nuclear industry. But do Ontarians realize how many jobs are supported by the nuclear industry and how much communities benefit from having companies in the nuclear supply chain? The nuclear industry in Canada contributes over $6 billion annually to the economy and supports 60,000 direct and indirect jobs. Many of these are in Ontario, and they stay in Ontario because of the expertise and high-quality manufacturing and engineering skills required by the industry.

When it comes to innovation in advanced energy technologies, you only have to cite the potential of small modular reactors (SMRs) or the next generation of inherently safe reactors that recycle fuel to feel the excitement among the younger generation of scientists, engineers, environmentalists. They see increasingly what new innovations in nuclear can do to bring reliable, safe, emissions-free energy – in the quantities needed – to an energy-hungry world desperately wanting more. They will be the generation to deliver this extraordinary benefit to humanity.
Take all of these and add them up. What you get is Ontario’s incredible nuclear advantage. Time to recognize this and capitalize on it. Nuclear provides solutions to the pressing needs of today and tomorrow. Time to think afresh about nuclear and its contribution to growth, to the environment, to an innovative, clean energy future.

An opportunity for such thinking is the Ontario Government’s forthcoming Long-Term Energy Plan. This is where Ontario’s nuclear advantage is established, underpinned and presented imaginatively for the future.

For our part, the Canadian Nuclear Association (CNA) is proud to launch a new website that promotes fact-based awareness and understanding of Canada’s nuclear success story: www.ontariosnuclearadvantage.com Ontario’s world-class nuclear sector is something of which Ontarians and all Canadians should be proud.

Environment Guest Blog Nuclear Energy

Talking Climate Change at WiN Global

By Heather Kleb
President
WiN Canada

In late August 2015, I had the pleasure of joining more than 400 Women in Nuclear (WiN)–Global members, from over 60 countries, at our annual conference in Vienna, Austria. Hosted by WiN–IAEA at the offices of the United Nations, the conference featured sessions on: medical use of radiation, safeguards and non-proliferation, nuclear security, and energy, environment and climate change.

Agneta Rising
Agneta Rising

One of the highlights of the conference was a climate-change panel with representatives from six countries. Among them was the Director General of the World Nuclear Association, Agneta Rising. Ms. Rising reminded participants of how quickly nuclear ramped up in the 70’s and that only one country (Germany) is now phasing out nuclear. This important context needs to be included in any discussion of the future of nuclear, and its role in mitigating climate change.

Climate change was also the focus of discussions during the WiN–Global board and executive meetings, where board members agreed to call for member support of a “Declaration of Nuclear for Climate.” The Declaration, which builds on the May 2015 agreement signed by 39 nuclear associations and 50,000 scientists from 36 countries, supports Nuclear for Climate’s global initiative to recognize the contribution of nuclear as a solution to climate change.

The WiN–Global declaration further reinforced that any discussion of low-carbon solutions that excludes nuclear is incomplete. Members of WiN-Canada were among the signatories to the Declaration, which requested that the “UNFCCC (United Nations Framework Convention on Climate Change) Protocols recognize nuclear energy as a low-carbon energy option, and that it be included in its climate funding mechanisms, as is the case for all low-carbon energy sources.”