Tag Archives: International Atomic Energy Agency


Nuclear: Challenging Our Notion of Risk

Risk surrounds us daily. We are constantly making decisions based on our perceptions of it. Our travel plans, our commute to work, our relationships and even our perceptions on social and political issues, all relate back to our perceptions of risk. Parents try to mitigate the risk that surrounds their children and of course there are the messages circulating around risk which can often be contradictory or too complicated to be easily understood.

Investigating risk and risk assessment is the latest project by documentary filmmaker Robert Lang, who sought out the world’s experts on the subject for his latest project, “Risk Factor”. “It’s complicated. We are all exposed to risk and we react to it whether we know it or not. And we hear about it in the news practically every night, whether it’s Zika or a terrorist attack or some health issue like the benefits or the dangers of drinking coffee, etc.”

The concept of risk also includes our perception of climate change and the risk behind certain energy sources such as nuclear.

“I have been an environmentalist for decades and for most of that time was anti-nuclear and wary of any form of radiation, because of the perceived threat of nuclear disasters …in general that’s in line with what environmentalists are supposed to think.” stated Lang. “But when you start looking at the facts and weighing relative risks and don’t lump all radioactivity risks into one basket, the picture becomes more nuanced. There are lots of benefits of radiation and nuclear power. I would say that the film made me confront some of my preconceptions and my understanding of what was going on in my hometown of Port Hope.”

The safety of nuclear power generation is often ignored. An analysis of the safety of each power source found that nuclear was one of the safest forms of generation. This analysis broke down fatalities by terawatt hour. Only rooftop solar had fewer deaths than nuclear, which was found to be safer than wind, hydro and even gas.

Misconceptions of safety around nuclear were highlighted in a report by the International Atomic Energy Agency that tracked the impacts of Fukushima. On March 11th 2011, the sea floor opened up causing a massive earthquake and tsunami with wave heights over 10 meters high. More than 15,000 people were killed with thousands more missing in the aftermath. However, no one was killed as a direct result of the accident at the Fukushima nuclear plant. In fact: the “United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) found that no discernible increased incidence of radiation-related health effects are expected among exposed members of the public and their descendants.”

Lang is hoping that his investigation of risk will challenge us to rethink our preconceptions and separate fact from fiction. The filmmaker notes that how we perceive danger is connected to cultural affiliations. Our social networks and interactions are largely based on aligning ourselves with others that we believe to share a similar mindset.

Robert Lang will be a featured guest and will host the Public Affairs Workshop, at CNA2018 where his film “Risk Factor” will be screened. For more information go to: https://cna.ca/2018-conference/


Nuclear Science, Climate Change & Sustainable Development: An Idea Worth Sharing

The fury of the Atlantic was on full display in late summer and early fall as hurricanes lined up to batter the Atlantic coast. Harvey, Irma and Maria knocked out power to millions of people and left communities in ruins. The power of Irma destroyed or damaged almost all the buildings on Barbuda, forcing the entire island to be abandoned. Meanwhile the force of Maria was enough to knock out power to all of Puerto Rico and citizens could be in the dark for months.

The Geophysical Fluid Dynamics Laboratory, part of the National Oceanic and Atmospheric Administration (NOAA), recently reported that ocean warming, resulting from climate change could have direct impacts on future hurricanes.

“Anthropogenic warming by the end of the 21st century will likely cause tropical cyclones globally to be more intense on average (by 2 to 11% according to model projections for an IPCC A1B scenario). This change would imply an even larger percentage increase in the destructive potential per storm, assuming no reduction in storm size.”

It’s not just through hurricanes that we see the direct impacts of climate change on human life. Climate change plays a huge role in access to food, water, health and the environment. As such, it is one of the contributing factors affecting sustainable global development. There are other factors to be sure. Together however, they condemn large parts of the world to poverty, underdevelopment, poor health amid a deteriorating environment. So, what to do?

To make life better for both developed and developing countries, the United Nations, in partnership with the global community, set out seventeen Sustainable Development Goals. These goals focus on meeting our needs today without compromising our future.

Thanks to uranium atoms, we can provide the necessary power to help lift people out of energy poverty, provide clean drinking water and help protect the environment, thereby bettering the lives of billions of people around the world. Nuclear science meets NINE of the seventeen sustainable development goals.

2 Zero Hunger:  Using nuclear science to alter the DNA of plants is a proven effective method to make them more resilient to climate change and is in use by 100 countries.

3 Good Health And Well-Being: A nuclear by-product, Cobalt-60, plays an important role in nuclear medicine. Low-grade Cobalt-60 is used to sterilize medical equipment such as syringes and catheters. High-Speed Activity (HSA) or medical-grade Cobalt-60 is widely used to treat cancer patients. Over 70 million people have been treated thanks to nuclear science.

6 Clean Water And Sanitation: Nuclear science using electron beams (e-beams) can break apart chemical bonds. China, the world’s largest textile industry, recently opened-up an e-beam wastewater treatment facility to treat and reuse wastewater used in clothing manufacturing.

7 Affordable And Clean Energy: According to IAEA projections, energy demand will rise by 60-100% by 2030. To help lift people out of poverty and realize the climate goals set out in Paris, low-carbon, cheap energy is needed. According to the Ontario Energy Board, in 2016, nuclear cost just under 7 cents per kilowatt hour, making it one of the most cost-effective, clean sources of energy. (Solar costs 48 cents per kilowatt hour and hydro 6 cents.)

9 Industry, Innovation And Infrastructure: Innovation in nuclear technology includes Generation IV reactors, hydrogen fuels, small modular reactors (SMRs) and fusion energy.

13 Climate Action: Globally, nuclear power avoids 2.5 billion tonnes of CO2 emissions every year, equal to taking approximately half of all (520 million cars) off the world’s roads. Nuclear power is the largest non-hydro source of low-carbon, clean energy worldwide, providing almost 12% of global electricity production.

14 Life Below Water: Nuclear science techniques that use radioisotopes can diagnose the impacts of ocean acidification on the food chain, giving scientists a better understanding of how rising acidity impacts both ecosystems and marine life.

15 Life On Land: Isotopes are a valuable environmental risk assessment tool as they can identify various contaminants which can help to assist with environmental monitoring and remediation of land areas.

17 Partnerships For The Goals: The global nuclear community has a long list of partnerships including various UN agencies such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO), universities and thank tanks and Indigenous communities.

While violent hurricane seasons are nothing new, the warming of our ocean waters, brought about by climate change, raise the concern that more catastrophic hurricanes, like the ones this season, could be the new normal. It’s just one example that underlines the importance of investments in sustainable science and technology, like nuclear, in order to keep the Earth on course to meet sustainable development goals today, ensuring a successful tomorrow.

CNA Responds

Response to “Pickering’s nuclear waste problem just got bigger”

Re: “Pickering’s nuclear waste problem just got bigger” (NOW Online, July 20), by Angela Bischoff, director of the Ontario Clean Air Alliance (OCAA).

Ontario Power Generation has safely stored used fuel bundles from the Pickering Nuclear Generating Station for more than 40 years. After they are removed from the water filled bays where they cool and become much less radioactive, they are placed in robust concrete and steel containers. Before being placed into storage, the containers are rigorously tested and safeguard seals are applied by an inspector from the International Atomic Energy Agency. The entire site is closely monitored by the Canadian Nuclear Safety Commission, which is Canada’s regulator.

Despite what the article argues, Canada has a plan in place to safely manage used nuclear fuel and identify a single, preferred location for a  deep geological repository (DGR) for used nuclear fuel. Potential sites are assessed by the Nuclear Waste Management Organization (NWMO) in a process that began when the communities formally expressed interest in learning more. The NWMO has narrowed a list of 22 potential and interested host communities down to five. A single site is expected to be selected in 2023 with licensing and construction to follow. It is expected that an operational facility will be available to begin taking used fuel shipments in the mid-2040s.

John Barrett, President & CEO, Canadian Nuclear Association, Ottawa


Nuclear Science: Mapping Out Red Tide

Seafood lovers could one day find their plates dry thanks to climate change. Findings reported on by the Marine Stewardship Council indicate that increasing greenhouse gas emissions absorbed by our world’s ocean are causing them to heat up and become more acidic. These changes threaten the very habitats that fish and other marine organisms like shellfish need to survive.

Coral habitat destruction, rising sea levels and red tides are just a few examples of ocean degradation due to climate change. Red tide or colonies of harmful algae blooms (HABs) is nothing new to coastal communities. This phenomenon has been documented for centuries, however it is only recently that researchers are investigating how changes to our ocean environment could be impacting this coastal occurrence.

This is where nuclear science comes in.​ Scientists with the International Atomic Energy Agency (IAEA) Environmental Laboratories in Monaco are using a nuclear technique known as receptor binding assay (RBA) to help better detect and map these harmful algae bloom outbreaks (HABs) to help protect human populations.

RBA works like this. In each sample, toxins and radiotracers or radioactive isotopes compete to bind to receptors or cells within the sample. How the isotopes behave tells scientists how much toxicity is present in the sample.

Red tides are transported by wind and ocean currents and are usually found close to the shoreline.  Ocean warming due to the absorption of greenhouse gases brought about by climate change has resulted in these toxic blooms become more frequent and more severe.

As the United States Environmental Protection Agency (EPA) pointed out, “recent research suggests that the impacts of climate change may promote the growth and dominance of harmful algal blooms through a variety of mechanisms including warmer water temperatures, changes in salinity, increases in atmospheric carbon dioxide concentrations, changes in rainfall patterns, intensifying of coastal upwelling and sea level rise.”

Red Tide outbreaks can be devastating to the aquaculture economies of developed and developing countries alike. A red tide outbreak that affected Luzon Island, Philippines in 2006 which had adverse impacts on the nearly 12,000 families that rely on shellfish to make their living.  When these toxic plants enter the food web they can kill off large numbers of fish and marine life. The US National Library Institutes of Medicine and Health discovered high levels of toxins in dead manatees and dolphins following a red tide outbreak.

However, the impacts of red tide are not limited to marine life. HABs can also cause illnesses in humans, mainly affecting the nervous system. Paralytic Shellfish Poisoning (PSP) is a potentially fatal condition that occurs when people consume shellfish that contain red tide toxins. Ingesting infected shellfish can impact the nervous system and cause dizziness or difficulty swallowing. In extreme cases, it can lead to death.

While science may not be able to stop red tide outbreaks, a method known as receptor binding assay (RBA) can help to better detect and map out these harmful algae bloom outbreaks, taking a step towards health protection of both marine environments and human populations.

The International Atomic Energy Agency (IAEA) in partnership with International Oceanographic Commission of ​UNESCO is working with approximately 40 countries is transferring the knowledge of nuclear technology to stop the effects of red tides on human population, making seafood safer thanks to nuclear science.


Nuclear Science: Preventing Future Ebola Outbreaks

West Africa experienced the largest Ebola outbreak in history in 2014. It claimed over ten thousand lives and impacted the entire countries of Liberia, Sierra Leone and Guinea. In June 2016, the World Health Organization (WHO) declared an end to Ebola and months later, in April of this year, Liberia removed its temporary Ebola treatment facility only for Africa to announce another outbreak just a month later.

Contagious and often deadly, the Ebola virus or hemorrhagic fever can be transmitted from animal to human and through human-to-human contact. Between 2-21 days after infection, a patient will experience symptoms that resemble a flu (fever, sore throat, headaches). As the virus continues to damage the immune system and organs, internal and even external bleeding can occur. Death rates for the disease can be as high as 90%.

The 2014 outbreak closed many schools in the region that remained locked for almost an entire year. Close to twenty thousand children lost their families, or were left without one or both parents, according to information reported on by UNICEF.

To prevent a repeat of the deadly Ebola 2014 outbreak, a team of scientists with the International Atomic Energy Agency (IAEA) are using nuclear science and technology to be able to effectively diagnose such viruses.

“We demonstrated our ability to respond quickly to emergencies such as the Ebola and Zika viruses, supplying affected countries with simple nuclear-derived kits so they could detect the diseases quickly and accurately in the field,” said IAEA Director General Yukiya Amano in his speech in late May at the International Conference on Technical Cooperation.

Early and rapid detection helps to limit the spread of such diseases. There are nuclear-derived techniques that scientists can use to help identify Ebola such as polymerase chain reaction technology (PCR) which examines the DNA of cells. Researchers in the Democratic Republic of Congo are hunting  fruit bats in the hopes that they might hold answers on Ebola, specifically, how the virus jumps from bats to other animals or how it causes outbreaks. And it’s not just researchers in the Congo. As pointed out by the IAEA, veterinarians in Africa are working in partnership with the agency to help prevent the spread of Ebola.

“Around 75% of human diseases originate from animals, which is why it is so important to stop them at the animal level. Nuclear-derived technology helps us do this,” according to Abel Wade, Director, National Veterinary Laboratory (LANAVET), Yaounde, Cameroon.

As was witnessed during the 2014 Ebola outbreak, quick and effective diagnoses is key to preventing large-scale transmission and infection. The most recent outbreak in the Congo was declared under control only a month after it was discovered.


Nuclear Science and Your Java

Most of us can’t live without our morning cup of java. According to the International Coffee Organization (ICO), almost 9 million bags of coffee are exported globally every month. Our caffeine addiction is rising at a growth rate of just under 2 per cent annually; making our morning pick me up big business.

But a disease known as coffee leaf rust could take the zap out of your coffee cup. Coffee leaf rust or Hemileia Vastatrix is a fungus that attacks the leaves of coffee crops. First documented in the late 1800s, coffee leaf rust can cause enormous economic damage to coffee production.  As has been widely reported, Sri Lanka was forced to give up coffee production thanks to a damaging outbreak of coffee leaf rust in the 1860s.

Credit: Krutar/Shutterstock

In 2013, Guatemala was one in a series of countries to declare a national agriculture emergency following an outbreak of the organism which destroyed about 70 per cent of coffee crops in the area. The impacts of this disease are profound. Over the last four years, countries in Latin America and the Caribbean have lost approximately one billion dollars in revenue.

The coffee leaf rust organism works by attacking the leaves on coffee plants, leaving behind a yellow-orange coloured looking lesion or spot on the bottom of the leaf. These rust-like lesions reduce a plants ability to conduct photosynthesis, the process by which plants convert sunlight and water to produce oxygen, sugar and carbon dioxide. Reducing photosynthesis, or a plants ability to feed itself, results in lower coffee yields thanks to smaller berry and vegetative growth. Long term impacts of the infection include death of the shoots and roots of the plants, thereby reducing the amount of coffee production overall.

Nuclear science is fighting back against coffee leaf rust.

The International Atomic Energy Agency (IAEA), in conjunction with the Food and Agriculture Organization of the United Nations (FAO) and other partners are hoping for a nuclear solution. They are attempting to breed plants that are resistant to the deadly fungus. A team of experts gathered in early October with the goal of producing resistant coffee plants through a nuclear technique called plant mutation breeding.

Plant mutation breeding works like this. Small doses of radiation are used to alter the DNA or genetic make-up of a plant, making them more resilient to disease and pests such as coffee leaf rust.

“Plant mutation breeding is a fast way to develop improved crops with new and useful traits,” said Stephan Nielen, FAO/IAEA geneticist in charge of the training. “The method also offers a widely accepted, economical and environmentally sustainable approach to protect yield and ensure adequate quantities of pesticide-free crops.”

The work being done in the labs is critical. Climate change is already taking its toll in coffee producing areas.  More heat and rainfall has equaled larger outbreaks of pests and diseases like coffee leaf rust, threatening the livelihood of an estimated 120 million people, often the world’s poorest, who rely on coffee income. An increase in temperatures and precipitation has provided a perfect breeding ground for this deadly disease. The problem has become so severe that in 2010, countries teamed up to form an initiative coffee and climate, a response to climate change and its impacts on the coffee industry. They are looking to help more than 70,000 farmers respond to climate change.

The work being done in labs with the IAEA will also provide another tool for the coffee industry, providing more genetically diverse, resistant plants, helping the environment and those who rely on it for their livelihood.