Tag Archives: John Barrett

Uncategorized

Nuclear industry eyes more federal support of ‘small modular reactors,’ as advocates push for Ottawa to hit pause

By Jolson Lim
Originally published in The Hill Times, December 3, 2018

The Canadian nuclear industry is looking for more federal government involvement in supporting the development of a new generation of reactors, after Natural Resources Canada put out a “roadmap” report earlier this month, spelling out steps different players in the sector could take.

The small modular reactor (SMR) roadmap was published on Nov. 7, and was co-developed between different public and private sector stakeholders. It recommends that federal, provincial, and territorial governments, along with utilities, industry, and the federally-funded national laboratory support demonstration of the use of SMR technology.

It also proposed: financial risk-sharing between the different players to support early deployment; the modernization of legislative and regulatory requirements to make development economically viable and timely; the development of a “robust knowledge base” for SMR technology; and for commitment to proactively engage with Indigenous communities.

SMRs are typically defined as nuclear reactors generating less than 300 megawatts of energy, and proponents see it as a promising source as the world struggles to fight climate change.

In Canada, backers see SMRs as a way to phase out diesel power for remote and Northern communities. However, to make it economically feasible within a small window of time for it to become a tool in reducing emissions, it would require demonstration soon, and eventually would require a fleet of reactors so manufacturers could benefit from more efficient and financially stable production.

But there is strong opposition to new nuclear energy development based on both environmental and safety concerns.

Nevertheless, any future development would likely have to involve government funding to support demonstration, on top of a regulatory review and placing a stronger emphasis on such technology in climate change plans.

“What would be so important now is for the government to show its policy support,” said John Barrett, president and CEO of the Canadian Nuclear Association (CNA). “But that kind of holistic policy statement is not available yet.”

Mr. Barrett’s association submitted a letter addressed to Finance Minister Bill Morneau (Toronto Centre, Ont.) following the release of his fall economic update in November.

The letter calls for the extension of clean technology and clean infrastructure funding and support programs, such as the ability to expense of 100 per cent of capital investments and loan guarantees, to nuclear technology in the next budget.

It also asks the federal government to recognize nuclear as part of Canada’s suite of clean energy technologies and to create a funding mechanism for applied research and development of the next generation of reactors.

“Such measures would go a long way in creating the supportive business innovation climate needed in Canada today to encourage clean technology developers and start-ups in the nuclear sector,” it reads. “Only with a significant scale-up of such sources can Canada meet its Paris climate targets.”

Canadian Nuclear Laboratories (CNL) is currently partnering with small-reactor proponents to get a prototype built at one of its sites by 2026 for future demonstration. The company wants to prove the commercial viability of such reactors, and position Canada as a global hub for testing and development.

The company is aiming for it to occur at its Chalk River research facility, which sits about 200 kilometres northwest of Ottawa. CNL manages and operates the two research laboratories in Canada for Atomic Energy of Canada Ltd., the crown corporation that owns such facilities.

Interest in SMRs is particularly strong in New Brunswick, where the local utility, NB Power, has partnered with an American firm to develop a small reactor in the province.

Mr. Barrett said Canada is in a commanding place with the development of SMRs, given its good regulatory and research environment and interest from different players. Globally, it makes the country an attractive place for development.

However, he said more federal focus is needed on nuclear energy.

“Nuclear is one of the tools that is sitting in the box and government hasn’t really pulled it out and taken a good look at what it can do,” said Mr. Barrett, adding it has a lot of export potential as well.

Concerns with SMRs

There are concerns that nuclear’s advantage as a low-carbon energy source is offset by serious safety and other environmental concerns.

Ole Hendrickson, a researcher for the advocacy group Concerned Citizens of Renfrew County and Area—where the Chalk River facility is located—said proponents of nuclear energy ignore other emissions, including various noble gases, iodine, and radioactive waste that has to be expensively and carefully managed. Such waste remains dangerous long after its use, and disposal remains a major concern and question.

“We don’t see small modular reactors as any different,” he said.

Earlier this month, the group appeared on Parliament Hill alongside Green Party leader Elizabeth May (Saanich-Gulf Islands, B.C.) to voice their concern over SMRs ahead of the release of the roadmap report.

Lynn Jones, a member of the citizens’ group, also questioned whether federal government funding is worth it, given there are concerns about its economic viability that has recently seen nuclear power struggle to grow globally.

“They can’t possibly succeed without significant government subsidies, the private sector has backed away from them all over the world,” she said. “They’ve come to Canada to try and get the government to subsidize them.”

Her group recently submitted two petitions to the Auditor General of Canada, with the first voicing concerns that any investment in future nuclear power would tie-up funds that would otherwise go to other proven renewables that could more quickly and effectively reduce carbon emissions. The second petition asks federal ministers to provide a justification for considering nuclear power to be a form of clean energy.

“It would take way too long to develop SMRs, apart from the fact there’s lots of other concerns about them,” she said.

The road ahead

John Stewart, director of policy and research at the CNA—speaking as the project manager of the SMR roadmap—said the report makes recommendations to a wide range of players, including governments, waste management organizations, industry, researchers, and the regulator, the Canadian Nuclear Safety Commission.

He said the “logical next step” is for one facilitating player to survey all those players to see what commitments they’re willing to make to further SMRs development.

“You need someone to do all that and elicit offers from the different players, get them to make specific commitments and eventually translate that into sort of national action plan,” he said.

He said he was pleased to see Natural Resources Minister Amarjeet Sohi (Edmonton Mill Woods, Alta.) attend the roadmap launch last month, despite not seeing a “lot in the way of signals” for nuclear power from the federal Liberal government.

Mr. Stewart said if the federal government offers a strong signal that SMRs can be a serious energy source, other players will follow up with tangible commitments.

“That would be a positive signal for other players to step up,” he said.

Nuclear energy accounts for almost 15 per cent of all electricity generated in Canada, particularly from two massive power plants in Ontario providing power to the Toronto region.

Mr. Stewart said nuclear power’s outlook has improved, but attitudes toward the severity of climate change haven’t matured fast enough that would see countries move quickly on SMRs.

“It looks better than it has in the past. Good would be going too far,” he said.

Uncategorized

A Carbon Tax Isn’t Enough — Canada Needs More Nuclear

By John Barrett, President and CEO, Canadian Nuclear Association
Originally published in the National Post, December 18, 2018

Today, the big federal-provincial debate centres around Ottawa’s plan to introduce a carbon tax. Changes in provincial governments have brought premiers into office who are openly opposed to Ottawa’s plan. But, as a country, are we becoming too wrapped up in one specific policy to combat climate change?

Climate change mitigation cannot be successful through carbon pricing alone. By only focusing on this we are losing sight of the importance of ramping up our clean electricity capacity.

Global emissions continue to increase at a rapid pace and most G20 countries are not on track to meet their Paris commitments, according to a recent report by the United Nations Environment Programme (UNEP). The sheer amount of clean electricity needed to meet future demand and help end energy poverty in the developing world will take all available generating sources.

Standing above all other options in sheer capacity to generate large quantities of clean electricity is nuclear energy. It is a solution that is proven and available now.

Greater progress required for a cleaner future

Canada’s nuclear reactor technology and uranium exports have contributed globally to the avoidance of millions of tonnes of CO2 over the last 30 years, by displacing fossil fuel sources.

Today, nuclear energy produces approximately 15 per cent of Canada’s electricity. In Ontario, it provides 60 per cent of the province’s electricity, and in New Brunswick, it provides 30 per cent.

Ontario is justly proud of phasing out coal generation. Contrary to what some people would have us believe, this was not due to variable renewable energy sources such as wind and solar coming online, but rather the refurbishment and subsequent coming online of Bruce Power nuclear reactors that made the end of coal a reality.

Last year, Sweden generated a whopping 95 per cent of its total electricity from zero-carbon sources, with 42 and 41 per cent coming from nuclear and hydroelectric power, respectively. France generated 88 per cent of its electricity from zero-carbon sources, with 72 and 10 per cent coming from nuclear and hydro sources. In both countries, the establishment of a fleet of nuclear power reactors during the 1970s and 1980s effectively decarbonized their electricity supply.

A plan for Canada and the world

While the contributions of wind and solar continue to climb, they cannot solve the immediate need. As they produce energy intermittently, they can’t run 24/7 and require backup generation, usually through fossil fuel sources, which add to GHG emissions.

By contrast, there is growing consensus for the need to ramp up nuclear. In April of 2014, the UN’s Intergovernmental Panel on Climate Change recommended tripling the amount of energy use from nuclear and renewable sources to keep climate change within two degrees Celsius.

Furthermore, Canada’s Mid-Century Long-Term Low-Greenhouse Gas Development Strategy, released at COP22, included nuclear in all the models it espoused for achieving drastic GHG emission reductions by 2050.

The nuclear industry has innovative new reactor technologies under development. They are distinguished by their smaller size, lower costs, and diverse applications, from powering off-grid communities to heavy industrial processes to hydrogen production. This is what we call the new nuclear – and it’s on its way.

By using today’s proven nuclear power and tomorrow’s new nuclear, we have a chance in Canada to actually meet our GHG reduction targets and claim real leadership in the transition to a low-carbon future.

CNA Responds

Response to “Pickering’s nuclear waste problem just got bigger”

Re: “Pickering’s nuclear waste problem just got bigger” (NOW Online, July 20), by Angela Bischoff, director of the Ontario Clean Air Alliance (OCAA).

Ontario Power Generation has safely stored used fuel bundles from the Pickering Nuclear Generating Station for more than 40 years. After they are removed from the water filled bays where they cool and become much less radioactive, they are placed in robust concrete and steel containers. Before being placed into storage, the containers are rigorously tested and safeguard seals are applied by an inspector from the International Atomic Energy Agency. The entire site is closely monitored by the Canadian Nuclear Safety Commission, which is Canada’s regulator.

Despite what the article argues, Canada has a plan in place to safely manage used nuclear fuel and identify a single, preferred location for a  deep geological repository (DGR) for used nuclear fuel. Potential sites are assessed by the Nuclear Waste Management Organization (NWMO) in a process that began when the communities formally expressed interest in learning more. The NWMO has narrowed a list of 22 potential and interested host communities down to five. A single site is expected to be selected in 2023 with licensing and construction to follow. It is expected that an operational facility will be available to begin taking used fuel shipments in the mid-2040s.

John Barrett, President & CEO, Canadian Nuclear Association, Ottawa

Uncategorized

Climate Action, Clean Energy and the Case for Nuclear

By John Barrett
President and CEO
Canadian Nuclear Association

Originally published by Policy Magazine.

With more and more countries struggling to meet the emissions goals set out in the 2015 Paris Agreement, it makes sense to consider all the low-carbon options at our disposal. Canadian Nuclear Association CEO John Barrett makes the case, ahead of the G7 in Charlevoix, for an approach that includes a renewed focus on nuclear energy. 

As world leaders gather in Charlevoix, Quebec, this June for the 2018 G7 Summit, the agenda will focus on concrete solutions to global challenges that extend far beyond the borders of these seven countries. Climate change and clean energy will be front and centre. What does Canada have to offer in leadership and real solutions?

Canada and France are leading the way in clean energy generation in the G7 and this is due in part to major investments in low-carbon, affordable nuclear power. In fact, according to a recent report by Natural Resources Canada, Canada’s electrical system is 80 per cent free of greenhouse gas emissions, second only to France out of all G7 nations. Furthermore, thanks to investments in clean energy, Canada’s overall GHG emissions profile went down by a few percentage points in recent years even as the economy grew. 

This is important because time to meet international climate change targets is running out. 

The International Energy Agency’s first Global Energy and CO2 Status Report found global carbon emissions hit a record high in 2017, after three years of being flat. In Canada, a joint audit, conducted by federal Environment Commissioner Julie Gelfand and auditors general in nine provinces, found Canada was not on track to meet its 2020 or 2030 greenhouse gas emission targets. 

Investments in clean and affordable energy aren’t just about reducing emissions, they are the foundation to ensuring access to jobs, health-care and education. Clean and cheap energy is necessary to lift communities out of poverty while ensuring environmental protection. Without proper electricity, countries suffer. As the World Bank reported, “one-quarter of the world population have no access to electricity. In the absence of vigorous new policies, 1.4 billion people will still lack electricity in 2030.” 

And, according to the World Health Organization (WHO), seven million people die every year from air pollution. The challenge is to produce policies and investments to transition to a lower-carbon economy. And to help other countries, where appropriate, to acquire the technology and materials for generating electricity from low-carbon sources. 

Some propose single solutions based on a preferred technology. Single answers to complex problems invite false hope for technologies that are today neither available nor proven effective when quantity, reliability and affordability are considered. This adds a considerable risk for huge costs as well as detrimental environmental impacts. 

For example, Germany’s Energiewende is a cautionary tale on why going green isn’t as easy as it sounds. Germany has shut down nuclear plants while making huge investments in wind and solar energy. However, its emissions have not declined. The new renewable energy has only offset the loss of nuclear—meaning that Germany has given up on meeting its 2020 emissions targets. Coal still represents 40 per cent of Germany’s electricity mix. At the same time, the cost of power over the last decade has escalated, rising by close to 50 per cent. 

This begs the question that, if we are really concerned about the impacts of climate change and if we really do need to ramp up energy production as a method of lifting people out of poverty and driving economic growth, why would we not include a low-carbon option such as nuclear power?

Instead of looking to Germany, look to Canada, especially the province of Ontario. Ontario is the real clean energy leader. 

Nuclear power is the main driver of Ontario’s almost zero-emission energy grid. The province is home to one of the largest investments in clean-energy nuclear on the planet. Nuclear provides the bulk of the electrical generation to the province; close to two-thirds of the energy supplied every day comes from the nuclear generating stations. 

Outside Ontario, New Brunswick has also demonstrated the benefits of nuclear to a clean and affordable electrical grid; displacing tens of millions of tons of carbon dioxide from the atmosphere. And thanks to the power of uranium from Saskatchewan, a pop-can sized amount of this rock is all the amount a person would need to power their lifetime; using a small amount of the Earth to create massive amounts of power.

The next generation in nuclear energy technology is already here. Natural Resources Canada is leading a mapping process under the Energy Innovation Program to explore the potential for on- and off-grid applications for small modular reactor (SMR) technology in Canada. Driven by interested provincial and territorial governments and energy utilities, the exercise will assess the characteristics of different SMR technologies and how they align with user requirements and Canadian priorities. The roadmap will be an important step for Canada to advance innovative, next-generation nuclear technologies and become a global leader in the emerging SMR market.

Meanwhile, the CANDU-reactor refurbishment program, supported by Ontario’s Long-Term Energy Plan, is underway and moving through the first phase at the Darlington Nuclear Generating Station on time and on budget. This program will replace major components and refurbish 10 reactors in total over the next 12 years at Darlington NGS and at Bruce Power’s site in Kincardine.  

This $26 billion program is the single largest clean-energy investment by any jurisdiction in the western hemisphere and possibly beyond. Moreover, it has unleashed creative juices, as both Ontario Power Generation and Bruce Power are encouraging innovation and advanced technology use at every step. Already there are important advances in robotics and control systems that will have application in other, non-power sectors of the Canadian economy.

Canada’s nuclear contributions to the G7 aren’t limited to energy. Nuclear science and technology has many proven benefits, meeting nine of the United Nations 17 Sustainable Development Goals. Nuclear reactors provide opportunities for water desalination to communities that experience water shortages. Desalinating water requires a tremendous amount of energy and nuclear can do it while releasing hardly any greenhouse gas emissions into the atmosphere.

Research and innovation in health care has helped to make Canada a world leader in the production of Cobalt-60, which is used in many areas of our health industry. Cobalt-60 is used in sterilization, diagnostics and treatments. This includes isotopes to help detect and treat diseases, new research into gamma therapy, and blasting tumor cells from the inside out and protecting healthy, surrounding tissues.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources)—a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

The next generation of nuclear technology will build on Canada’s track record of excellence, looking to recycle current spent fuel, developing reactors that can provide power and heat to communities and even hold the promise of carbon-free gasoline. 

Climate change and clean energy are two of the most pressing issues of our time. Canada has a real opportunity to continue to take centre stage on these issues. The facts still matter. If we are to achieve our climate targets, sustainably manage resources for future generations and provide the world with access to clean and cheap energy, then we need nuclear to be part of the mix. Recognizing this is an important step to bringing real solutions today, without waiting for technologies that are not here now. 

With time running out to meet greenhouse gas emission targets and to prevent climate change from increasing temperatures by two degrees Celsius—now is not the time to expect a silver bullet to appear or to rely on one technology over another. 

A more effective and realistic approach is to foster collaboration that makes the best use of all available solutions to create a low-carbon future, allowing the world to meet emission targets while avoiding the potentially catastrophic impacts of climate change. 

Thanks to nuclear’s role in our electricity mix, Canada and Ontario can show how it can be done.

CNA Responds

CNA response to “The security of Ontario’s nuclear plants should be an election priority, not the salaries of top Hydro One execs”

The op-ed “The security of Ontario’s nuclear plants should be an election priority, not the salaries of top Hydro One execs” (The London Free Press, May 4) exaggerates the risks posed by nuclear energy.

The probability of a Fukushima-like event in Ontario is extremely low. Despite this, following Fukushima, the Canadian Nuclear Safety Commission inspected Canada’s nuclear power plants and revised standards to improve reactor defense and emergency response. Changes to regulation and licensing were also made to ensure better disaster preparedness and mitigation.

The CNSC’s Fukushima Task Force Report stated that the tsunami risk at the Darlington, Pickering, and Bruce Power generating stations is very low, given their location on the Great Lakes. The geological stability of the underlying Canadian Shield also minimizes the risk of earthquakes and tsunamis.

As for cyberattacks on nuclear power facilities, there is no risk to the operations of nuclear power plants because the reactors and control rooms are not connected to the Internet. Nuclear power plants are some of the best protected infrastructure systems. They are designed to be disconnected from the Internet and other networks, preventing hackers from accessing plant operations or safety systems

Globally, the nuclear industry has a strong safety culture of continuous improvement. Safety is always the No. 1 priority.  And nuclear ranked as the safest source of power in a 2012 Forbes report based on fatalities per kWh.

John Barrett
President and CEO
Canadian Nuclear Association
Ottawa, ON

CNA Responds

CNA response to “Nuclear energy isn’t ‘clean'”

Re: Nuclear energy isn’t ‘clean’ (Winnipeg Free Press, April 25)

Dave Taylor’s opinion piece declaring nuclear neither clean nor the future ignores the reality of decarbonization at the national and global level.

In April of 2014, the UN’s Intergovernmental Panel on Climate Change recommended tripling the amount of energy use from renewable energy and nuclear power to keep climate change within two degrees Celsius.

The International Energy Agency in their 2016 World Energy Outlook predicted a requirement for global nuclear generation to increase by almost two and a half times by 2040.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources) – a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

Globally, nuclear power is on the upswing. According to the World Nuclear Association, there are 60 nuclear reactors currently under construction worldwide, with another 157 on order or planned, and 351 that have been proposed.

Unlike some other sources of energy, nuclear does not release its waste into the atmosphere. Spent fuel is safely stored and relies on sound science and technology. Through the Nuclear Waste Management Organization, Canada has a plan for the safe, long-term management of used nuclear fuel that is fully funded by nuclear operators in Canada.

Finally, contrary to Taylor’s statement regarding the futility of Canada’s reactor sales, it should be noted that Canada has actually sold 12 CANDU reactors to China, India, Romania, Argentina and South Korea.

John Barrett
President and CEO
Canadian Nuclear Association