Tag Archives: Nuclear Energy

Uncategorized

Low Carbon, Clean Energy: Making Communities Healthier

According to the U.S Energy Department’s latest International Energy Outlook 2016 (IEO), worldwide energy consumption will increase by almost 50 percent by 2040. Meeting global demand will require growing the renewable and nuclear power industries.

The IEA forecasts that worldwide nuclear power, which currently offsets an estimated 2.5 billion tons of CO2 emissions yearly, will slightly increase in its contribution to the global electricity grid. The forecasted 2 percent increase is not nearly enough. If countries like Canada are to meet COP21 targets and improve the health of our environment we need more nuclear.

Information confirmed in the latest IEO report found “even though non fossil fuels are expected to grow faster than fossil fuels (petroleum and other liquid fuels, natural gas and coal), fossil fuels will still account for more than three-quarters of world energy consumption through 2040.”

health2An extreme shift in weather patterns brought about by greenhouse gas emissions  has resulted in more heat and flooding, increasing the amount of ground-level ozone, carbon dioxide and particulates – all of which have negative health consequences

The climate change price tag for Canada’s healthcare industry is a hefty one. Data released by the Canadian Medical Association (CMA) found that by 2031 air pollution related illnesses, including lost productivity and ER admissions could cost Canadian taxpayers close to $250 billion.

The projected ongoing use of fossil fuels is a concern both for meeting climate targets and for improving air quality which are critical components to improving overall health. In a 2014 news release, the World Health Organization (WHO) reported “in 2012 around 7 million people died – one in eight of total global deaths – as a result of air pollution exposure. This finding more than doubles previous estimates and confirms that air pollution is now the world’s largest single environmental health risk. Reducing air pollution could save millions of lives.”

In Canada, the rates of Severe Asthma are rising, due in part to climate change. Over a quarter-million Canadians live with severe asthma.  Furthermore, allergies can be triggered by mold related to flooding and by increased pollen production from distressed plants.

“People with severe asthma may struggle to breathe even when they are taking their prescribed medication,” states Vanessa Foran, President and CEO of the Asthma Society of Canada.  “Environmental allergens are the primary triggers for 60-80 % of Canadians living with asthma,” she says.

Continuing to invest in low-carbon energy sources is an important step in improving air quality. The year 2000 saw a peak for coal-fired electricity generation in Ontario, with almost 50 million tons of GHG emissions being released into the environment. Fifteen years later, nuclear energy accounted for the majority of electricity generation – 66.5%, displacing over 90% of emissions, thereby cleaning the air and improving the health of Ontarians.

As Canada’s largest province moves forward in developing its next Long-Term Energy Plan, which has a key focus on clean, reliable energy, it is clear that nuclear must be at the forefront of discussions.

A safe and reliable energy source that contributes to climate commitments, nuclear power can help to improve the health of people around the world while meeting an increased global demand for energy.

Uncategorized

The Future: No Doomsday Cult Required

By John Stewart
Director of Policy and Research
Canadian Nuclear Association

DoomsdayMy adult son, who is a wise, reflective, intelligent and well-read man, recently shared with me his view of the world in a few decades. It was apocalyptic: dead oceans, cities run by criminal gangs… you get the idea. (He was trying to persuade me to retire early and enjoy life while I can).

Admittedly, there is reasonable evidence for his forecast. I happen to take a less pessimistic view. He and I don’t disagree much on facts, but rather on how we project them into the future.

I’m also more historically conscious: I’m more aware that it is not, and has never been, unusual to forecast that we are all doomed.

Doomsday predictions have been with us since ancient times. They are doubly useful. They employ fear to recruit believers into whatever religion we’re evangelizing. And they provide the satisfying glow of knowing what a terrible end awaits those who won’t join us and how they’ll realize, when that end comes, that we were right and they were wrong.

There is always evidence that can be pressed readily into service. Religious cultists generally point to society’s (always apparent) corruption and moral decline. Thomas Malthus noted the unrestrained fertility of the poor. Marx and the communist ideologues saw the clear drawbacks of industrial society, and predicted that capitalism would inevitably falter and collapse. 1960’s environmentalists overextended Rachel Carson’s solid, ground-breaking work on the effects of pesticides. The 1970’s resource-exhaustion panickers distorted the Limits to Growth report; they took commodity price spikes as proof that the world was running out of natural resources.

There’s a bit of moral superiority at work. Those who see the light, who invest in the new religion, are the wise and good. Those who don’t agree wholeheartedly with them are mentally and morally deficient. If they can’t be beaten in argument, at least they’ll see the error of their ways on judgment day.

These features have carried through from the ancient religious doomsday cults, to socialist ideologies, to present visions of Our Renewable Energy Future. The old system is doomed. The crash will come in our lifetimes (otherwise, why convert?). To save yourself and prosper in these dark times, you must commit to the new religion.

Belief in society’s moral decay gradually fused with belief in capitalism’s self-destruction, which apparently now has become belief in our biosphere’s demise. Indeed, the three have gotten quite muddled: consumerism is portrayed as a kind of moral and spiritual decay, which has been foisted on humanity by corporations. The system we’ve built is now destroying not just our souls, but itself and Mother Nature too. EarthTimeBomb

I realized this when listening to my son talk about the future: Our Renewable Energy Future is somehow mixed up with Original Sin, the population bomb, and the inevitable crash of the capitalist system. It’s repeatedly characterized as “inevitable,” the speed of its arrival is overestimated, and of course we can’t rely on failing corporate structures (or cities) to implement it. Somehow we’re all going to achieve it in small cooperative teams in the countryside.

There’s a lot of baggage here. But my son and I acknowledged it and got beyond it. And we continue to have the reasonable discussion we both want. It can be done.

Uncategorized

Toronto To Host Climate Talks

Toronto will heat up in July. Amid the heat and humidity of summer, it will play host to two global events — the Pan-Am Games, and the Climate of the Americas Summit. More people will watch the games than the summit, but the talks may be the more important event.

In mid-June the Ontario government, led by Kathleen Wynne, touted the province’s track record on improving air quality.

Wynne tweeted out, “Ontario is leading the way in clean energy and the fight against climate change.”

It’s a good record. Ontario is the first North American jurisdiction to abandon coal as a source of electricity– an accomplishment made possible through its reliance on affordable, low-carbon nuclear energy.  In 2014, nuclear generators delivered 62.7 percent of the electricity carried on Ontario’s grid.

Nuclear’s clean-air contributions were confirmed recently by the International Atomic Energy Agency.

NUCLEARFINAL

The report states:

The very low CO2 and GHG emissions on a life cycle basis make nuclear power an important technology option in climate change mitigation strategies for many countries. The figures demonstrate that nuclear power, together with hydropower and wind based electricity, remains one of the lowest emitters of GHGs in terms of  CO2-(equivalent) per unit of electricity generated.

If anything, Ontario’s nuclear experience offers an excellent case study for the climate-change summiteers. Nuclear energy provides a climate-stabilizing foundation for energy development. Between 2000 and 2013, nuclear power production in Ontario grew 20 percent while coal’s power production shrank.

Today, nuclear energy’s steady, reliable, around-the-clock performance enables Ontario’s experiments with renewable energy sources. If ever storage technologies advance sufficiently, the renewable energy sector may someday match nuclear’s proven grid-scale reliability. Until then, nuclear is Ontario’s best bet – and an excellent example for the summiteers to take home.

Environment Nuclear News

The Next Generation of Nuclear

June in Paris. It’s a time for lounging in the gardens just outside of the Louvre and stopping into Berthillon’s for a sweet escape from the crowds. It’s also where young professionals from all over Europe will gather June 22nd – 26th to discuss the next wave of nuclear energy.

PARISTOWERA 2014 report by the IAEA looked at the role of nuclear energy in the fight against climate change.  What the report found, was that if substantial measures are not taken to curb CO2 emissions we will see our pollution footprint rise to an estimated 20% by 2035.

Population growth and economic development are driving the demand for electricity, forecast to double by 2050. According to the Intergovernmental Panel on Climate Change, the demands of industry and population growth will require that 80% of all electricity generation come from low-carbon sources.

One of the most effective ways to meet these targets is through nuclear power.  In May, 39 nuclear societies representing 36 countries signed an agreement in Nice, France in May to show their commitment towards helping the environment.

The building blocks of this commitment will continue to be strengthened as an estimated 400 students and young professionals from across Europe gather in Paris to tackle energy generation and the environment head on.  According to Sophie Missirian, the SFEN Young Generation President, it is a key role for the future of the industry.

“I believe it is the role of the young generation to defend the idea that nuclear is a solution to fight climate change and must be recognized as such.”

Six months ahead of the big climate summit in Paris, conference organizers and attendees will key in on how to find success in December. They will take on issues including the impact of uranium mining on the environment, waste management options and the physics behind building reactors. The success of this year’s conference has yet to be realized but as one attendee put it, “It’s great that we are having this nuclear renaissance across Europe and across the world.”

The Young Generation Network exists in 48 countries. It was established twenty years ago by the European Nuclear Society as a way to exchange knowledge and encourage the participation of young people in national nuclear sectors.

Uncategorized

Nuclear Energy Delivers Clean Air for Ontario

Starting in the 1950s, coal made up a large part of Ontario’s power mix. Coal was inexpensive, and Ontario lacked sufficient alternatives such as hydroelectric power or natural gas. By the late 1990s, however, links between adverse health effects and air pollution were firmly established, and much of this could be traced to Ontario’s coal-powered plants.

In 2003, Ontario began to replace its coal-fired plants with nuclear energy, completing the switchover in 2014. Over that time, air quality improved significantly, reducing respiratory illnesses and deaths.

ONTARIO’S EVOLVING POWER CHOICES

Ontario’s first electrical power supply came from a hydroelectric generating station on the Ottawa River in 1892. Hydro expanded rapidly across the province in the early 20th century. But it could not expand indefinitely: not every river can be dammed at places that are economically feasible and environmentally sensible. So, in the 1950s, Ontario added six coal-fired power stations to meet rising demand. Practical, large-scale nuclear power was not introduced in Ontario until the 1970s.

Coal remained an important part of this mix until the end of the 20th century, when it made up about a quarter of electricity generation in the province. By that time, the health risks of coal were becoming increasingly apparent.

THE LEGACY OF COAL

As burners of carbon-based fossil fuels, Ontario’s coal-fired power plants were heavy emitters of greenhouse gases, which threaten to accelerate climate change. They also emitted pollutants that affect human health directly: mercury, several air-borne carcinogens, and sulphur dioxide, which can make asthma symptoms worse. Sulphur dioxide can also react with other substances to create particulate matter – small solids or liquid drops in the air that can damage lungs.

Burning coal also releases nitrogen oxide, which contributes ground-level ozone, a principal factor in smog, which has a devastating effect on public health.

In Toronto, airborne particulate matter commonly exceeded 20 μg/m3, the level at which adverse health effects can be demonstrated. It sometimes reached 75 μg/m3. Ground-level ozone often exceeded 80 parts per billion, far higher than the level of 31 ppb associated with increased hospitalization rates for asthma, lung disease, and respiratory infections.

The province attributed 1,800 premature deaths and 1,400 cardiac and respiratory hospital admissions each year to smog. Several studies and reports had also highlighted the connection between Ontario’s air quality and public health.

  • In 2004, Toronto’s health department estimated that 1,700 Toronto residents died prematurely and 6,000 Torontonians were admitted to hospitals because of air pollution each year.
  • A 2005 report by the Ontario Ministry of Energy concluded that coal contributed to 928 hospital admissions and 1,100 emergency-room visits each year.
  • In 2005, a report by the Ontario Medical Association identified several other costs of air pollution, including at least $150 million in additional healthcare costs, $128 million in lost productivity, and a total of $2.4 billion in economic damage.

Ontario's supply mix - 2000 vs. 2013 (2)CHANGING THE MIX

Pressure was building to improve air quality. In 1999, the Ontario Public Health Association called on the province to replace its coal-fired power plants with cleaner power sources. The Ontario Medical Association had already declared an air pollution crisis.

Phasing coal out

In 2007, the Government of Ontario adopted the Integrated Power System Plan, guiding the province’s energy choices over 20 years. The plan aimed to stabilize prices, double renewable energy, and increase conservation. Its central goal was to replace toxic coal with cleaner power.

Ontario closed four coal-fired plants in 2010, and the last one in 2014 – making Ontario the first jurisdiction in North America to shut down coal-fired generation.

Phasing nuclear in

Even with the conservation measures set out in the plan, Ontario would have to supply electricity to make up for the closures of the coal-fired plants. Hydro was not an option, as Ontario had reached nearly 75% of its hydro capacity. Renewables such as wind and solar showed promise – and the plan aimed to double their use – but represented only tiny fraction of Ontario’s power supply, and could not be scaled up easily. Furthermore, solar and wind do not produce steady power around the clock, which is necessary to prevent brownouts.

The Government of Ontario recognizes nuclear power as a reliable and safe supplier of electricity. Since 2003, investment in Ontario’s power infrastructure has modernized three reactors (Pickering A Unit 1 and Bruce Units 3 and 4) and returned them to service. Nuclear power, which made up 37% of Ontario’s power mix in 2000, stood at 62% in 2014.

AIR POLLUTION: HOW ONTARIO’S POWER MIX STACKS UP

Any change in the power mix has environmental consequences – which leads Ontarians to ask whether the transition from coal to nuclear power might simply involve changing types of air pollution.

To answer this question, it is important to look at a power plant’s emissions from cradle to grave – including its construction, its fuel source, its waste products, and its eventual shutdown and decommissioning.

Smog factors

All methods of power generation emit particulate matter and contribute to ground-level ozone. However, nuclear energy emits far less particulate matter per unit of electricity than any fossil fuel – and less than wind.

Greenhouse gases

Greenhouse gas emissions by nuclear power are surprisingly low, considering the amount of construction needed to build a nuclear power plant. But those plants operate for decades, and emit no greenhouse gases while generating electricity.

And because of the vast amount of power that can be extracted from a small amount of uranium (20,000 times that of coal, by weight), emissions from nuclear power compare favourably with renewable energy sources, and are well ahead of fossil fuels.

Carbon emissions per kWh

CLEANER AIR, TODAY AND TOMORROW

Today, Ontarians enjoy cleaner air. According to the provincial government, “Ontario’s air quality has improved steadily since 1988. We have good air quality approximately 90 per cent of the time.” With the exception of a spike in 2012, which included a serious drought, the number and duration of smog advisories across the province has dropped steadily since 2003.

Cleaner air means better health. In Toronto, premature deaths attributed to air pollution dropped from 1,700 to 1,300 between 2004 and 2014, while hospitalizations fell from 6,000 to 3,550.

Even with this progress, there is still much room for improvement – especially as Ontario’s population ages and more people are at higher risk of health effects from air pollution. And, as the economy grows, Ontario will need a reliable, clean-air power source that keeps prices stable and affordable. Nuclear power can meet this need, partly because Canadian-designed reactors can be refuelled without shutting down, and because they draw from a fuel source that is abundant in Canada.

Recognizing this value, the province also put primary focus on nuclear energy in its 2013 Long-Term Energy Plan. It decided to upgrade and replace key components at the Bruce Power and Darlington sites, so they can continue to provide clean power for decades.

Uncategorized

Why Ontario Needs Nuclear

The following infographic shows the rationale for using nuclear energy in Ontario. Simply put, Ontario is the second largest energy polluter in Canada, and nuclear is the only reason the province isn’t worse off. Among the clean energy options, nuclear is one of the most affordable, and it’s readily available.

The seven points below make it clear why Ontario needs nuclear.

Why Ontario Needs Nuclear - Infographic