Tag Archives: nuclear reactor

Uncategorized

Small modular reactors help us take a giant leap in the fight against climate change

By John Gorman
Originally published in The Globe and Mail, December 12, 2019

To many Canadians, it may not seem like a big deal that the three provinces that have nuclear sectors – Ontario, New Brunswick and Saskatchewan – signed an agreement to develop small modular reactors (SMRs). But this milestone represents a giant leap forward for Canadian industry and the fight against climate change.

I’m new to the nuclear industry, but I’ve been working in the energy sector for 20 years. I’ve seen new technologies revolutionize how we produce and manage electricity. The development and deployment of SMRs has the potential to be even more transformative than the introduction of wind and solar power.

Why am I and others in the energy sector so excited about SMRs? The answer is in their name. First, they are small. Large reactors are powerful: They generate clean and inexpensive electricity for decades. But they take years to build, they are suitable only for large demand and they can’t be moved. SMRs, on the other hand, are like solar power in that they can be scaled to suit local needs.

SMRs are also modular, meaning they can be mass-produced and shipped to remote locations. A small city could use an SMR until it reaches capacity, then add another as the city grows. A mine could use an SMR to help with its peak production, then ship it to a new location when operations slow down.

The modular approach will also help to reduce costs. A new advanced reactor could cost more than $1-billion, but mass production removes duplication of the costs of licensing and customization. Bulk purchasing of parts and replication of skills would reduce costs further. In short, the upfront investment will be big, while the payoff in terms of inexpensive energy will last decades.

SMRs are to large reactors what desktops were to mainframe computers in the 1980s. They made computing practical, flexible and accessible for everyone.

There are three main ways that SMRs can transform Canada’s energy sector. First, as more provinces and territories phase out coal, SMRs can fill in the gap, producing similar amounts of power without carbon emissions and other pollution. SMRs produce a steady supply of electricity making it an ideal partner to wind and solar by eliminating the need for fossil fuel backups when the wind isn’t blowing or the sun isn’t shining.

Second, SMRs can be deployed in the many remote communities in Canada that still use fossil fuels to generate electricity because it’s simply not economical to build hundreds of kilometres of power lines to connect to the grid.

Finally, SMRs can help with the operation of heavy industry, such as oil sands and mines. These facilities are a big part of Canada’s economy, but they are often remote and off-grid, and they need a lot of heat and power to operate.

There are some environmentalists who still resist the expansion of nuclear power. When I was chief executive of the Canadian Solar Industries Association, I was one of them. That’s until I realized that the critical transition to a low-carbon economy will be almost impossible without the reliable, safe and clean energy that nuclear technology provides. We need nuclear power to reduce emissions, as an increasing number of environmentalists, industry leaders and the International Energy Agency agree.

SMRs have several safety advantages built into them. Some designs use molten salt or liquid sodium as a coolant instead of water. Some are built so that the reactor shuts down if it is not being actively managed, while others are designed so that the reaction slows if it gets too hot. And the designs incorporate several advances in managing waste as well. Some are designed to require refuelling only every few years or even decades, and some “recycle” spent fuel, producing only a fraction of the waste of a conventional reactor.

We’re about to witness a fascinating race to determine the best SMR design, and some of the leading candidates are Canadian. Three companies have now passed the first review by the Canadian Nuclear Safety Commission. They are now entering the second phase, a more detailed examination of their safety. Seven more designs are now in the first phase, and Canadian Nuclear Laboratories plans to have a demonstration unit built by 2026.

Canada has a great history as a leader in nuclear technology, dating back decades. We have some of the largest resources of uranium in the world. We also have the right people with the right skills to build safe and reliable nuclear reactors. And now that three provinces consider them a key technology for meeting emission targets, we have a clear demand for SMRs.

The agreement between the three provinces is the beginning of a transformation of our energy sector. But it’s more than that. We’ve just witnessed an election campaign that exposed regional divisions around energy and climate change. I don’t think SMRs are the entire answer to this debate, but they have the potential to be a uniting force between federal and provincial interests. Working together, we can use SMRs to meet our growing energy needs, reduce emissions and introduce carbon-free electricity to many new places in Canada and around the world.

Uncategorized

Small Nuclear Reactors to Power Canada’s Low-Carbon Future

By John Barrett, President & CEO, Canadian Nuclear Association
Originally published in the Hill Times, August 13, 2018

Canada has a lot going for it as it seeks to establish itself as a leader in the nuclear energy space. It has world-class research and development capability, including the renowned Canadian Nuclear Laboratories and other industry-run, specialized labs, writes the CEO of the Canadian Nuclear Association.

Imagine a Canada with a clean, affordable and diversified energy system that is a world leader in deep decarbonization and GHG emissions reduction. Imagine, too, an end to energy poverty in many small and remote Canadian communities that now struggle on diesel fuel.

Imagine a promising, innovative and cutting-edge technology that opens doors to economic competitiveness and puts Canada at the forefront of international supply markets hungry for clean energy solutions.

That imagined future is on the verge of becoming tomorrow’s reality. That is, if we seize the opportunity before us.

The opportunity lies in SMRs – small modular reactors.

SMRs are smaller, simpler and more portable than conventional nuclear power reactors. Many designs utilize advanced technologies to ensure intrinsic and inherent (passive) safety. Should they overheat, they automatically shut down without any human involvement or active cooling systems. Being self-contained, their environmental footprint and impact is next to nil.

These micro-energy systems will be made and fueled at the factory, transported to location, operated safely and affordably for the next five-to-ten years, then returned and replaced by another unit. Most importantly, they provide substantial quantities of clean electricity and heat on a 24/7 basis, independent of changes in wind, water or sunshine, and are designed to operate in harmony with renewable energy and storage technologies.

Canada is seen internationally as leading the way on SMRs. There are several reasons why.

First, nuclear is already a big part of Canada’s low-carbon energy supply, producing 20% of our country’s clean electricity. Nuclear power allowed Ontario to shut down its coal-fired generation for good; it supplies daily around 60% of Ontario’s electricity needs and over one-third of New Brunswick’s. That’s a fact, not an aspiration.

Second, there are distinct areas of the Canadian economy where SMRs are a natural fit. For example, SMRs can be added to existing grids, especially in jurisdictions aiming to reduce use of fossil fuels for power generation; they can be added in increments for the greater electrification needed to transition to a low-carbon economy. In addition, SMRs can be used off-grid in mining and oilsands production, providing large quantities of clean power for mine sites and bitumen extraction processes – thereby reducing GHG emissions significantly. And very small SMRs – essentially large batteries – can power remote settlements that today have no clean, reliable alternatives to diesel fuel.

Third, parliamentarians are recognizing that SMRs offer an opportunity too important to ignore. An all-party study by the House of Commons Standing Committee on Natural Resources in June 2017 recommended that work be undertaken to examine and promote the beneficial contribution and impact that SMR development promises for Canada.

Fourth, in response to the Committee’s report, key public and private stakeholders have launched the SMR Roadmap Project – a series of policy discussions and workshops with Indigenous people, utilities, provincial representatives, major potential users in the resource extraction and industrial sectors, as well as communities in northern Canada. These consultations are exploring the human and environmental needs that SMRs can fulfill and mapping out the steps needed for SMRs to advance from development, to licensing, to deployment.

Fifth, Canada has an internationally recognized brand in nuclear. We have world-class research and development capability, including the renowned Canadian Nuclear Laboratories (CNL) and other industry-run specialized labs. We have utilities and operators recognized internationally for their expertise and established record of safe reactor operations. We have the Canadian Nuclear Safety Commission, one of the world’s foremost nuclear regulators, to ensure that SMRs must demonstrate the highest safety standards before a license to operate is issued.

Sixth, the potential for exports of Canadian-made and Canadian-licensed SMRs to international markets is enormous, with considerable job creation and supply chain impact. There is a real appetite for clean energy in many parts of the world: SMRs are a solution to those human needs, which connect directly to better health and longer lives.

If these reasons aren’t compelling enough, then consider: nuclear technology contributes to nine of the seventeen UN Sustainable Development Goals. With CANDU reactors, SMRs and our uranium fuel, Canada can help the world to de-carbonize, bringing our energy and environmental leadership together to provide real benefit to an energy-hungry humanity.

Dr. John Barrett is President & CEO of the Canadian Nuclear Association and served as Canada’s Ambassador to the International Atomic Energy Agency in Vienna.

Uncategorized

Ontario Writes the Playbook for its Nuclear Refurbishment

Editorial - principlesOntario is preparing to refurbish 10 of its 18 nuclear reactors, beginning at the end of this year. This investment will extend the lives of the reactors, keeping their operation safe and effective for decades to come. It will also create thousands of jobs and inject much-needed  dollars into Ontario’s economy. The project comes in at half the cost of building new reactors – and is considerably cheaper over the long term than investing in solar, wind, or gas for a similar amount of power.

As Ontario Energy Minister Bob Chiarelli said in an interview with Global News, “The best cost deal in replacing the existing nuclear is to refurbish what we have.”

That said, refurbishment still comes at a cost: about $25 billion for the 15-year project. So, Ontario’s Long-Term Energy Plan for 2013, which announced the government’s decision for refurbishment, set out seven principles for the refurbishment – and everyone involved in it.

“Minimize commercial risk on the part of ratepayers and government”

The people and government of Ontario are making a large investment in nuclear power. They should receive the expected return on that investment without a great risk of having to invest further. The other six principles follow from this one.

“Mitigate reliability risks by developing contingency plans that include alternative supply options if contract and other objects are at risk of non-fulfillment”

Ontario has a diverse power mix. Electricity comes mainly from nuclear power, but hydro, renewables, and gas also play important roles. The province can also buy power from other provinces or states. So, while the Long-Term Energy Plan recognizes the refurbishment of nuclear power plants as the best long-term option, the province will also look at investing in these alternatives. Ontario’s recent agreement to share electricity with Quebec at certain times of the year may create more flexibility for the province.

“Entrench appropriate and realistic off-ramps and scoping”

One way of holding the operators and contractors to account involves “off-ramps” – contract terms that allow the province to limit or stop the project if it goes over budget.

Hold private sector operator accountable to the nuclear refurbishment schedule and price”

As the private-sector operator involved in the refurbishment project of the Bruce power plant, Bruce Power must ensure that the refurbishments stay on schedule and within budget; the company will not be in a position to simply pass additional expenses on to ratepayers.

“Require OPG to hold its contractors accountable to the nuclear refurbishment schedule and price”

Likewise, Ontario Power Generation (OPG) is contracting much of the refurbishment at the Darlington station to more specialized companies. A slowdown or cost overrun for any one of them could affect the overall timeline and budget. So, these companies are being held accountable as well.

“Make site, project management, regulatory requirements, and supply chain considerations and cost and risk containment, the primary factors in developing the implementation plan”

Robust project management is at the core of the refurbishment project. For example, at Darlington, OPG did an environmental assessment, which showed that the refurbishment would not have any significant adverse environmental effects. A safety review also demonstrated that the Darlington plant meets modern codes and standards and follows sound industry practices. Safety improvements recommended by both these assessments are now part of the Darlington Integrated Implementation Plan. Finally, an overall risk assessment demonstrated that Darlington is a safe and reliable power plant, and will continue to be after planned safety improvements. Similar measures are underway at the Bruce facility.

“Take smaller initial steps to ensure there is an opportunity to incorporate lessons learned from refurbishment including collaboration by operators”

The refurbishment project will begin with two reactors – one each at the Bruce and Darlington facilities. Through the 15 years of the project, no more than three reactors are planned to be under refurbishment at any one time. This will provide opportunities to assess each refurbishment, learn from it, and apply those lessons to the next ones.

Even the first refurbishments will benefit from experience – such as refurbishments at Bruce Power, at Point Lepreau in New Brunswick, and at the Wolsong 1 reactor in South Korea. OPG has also created a full-scale replica of the Darlington reactor vault for testing tools, training, and ensuring that the teams can coordinate in real time.

Uncategorized

CNA Visits the Canada Science and Technology Museum

By Erin Polka
Communications Officer
Canadian Nuclear Association

On January 28, 2015, CNA staff had the opportunity to view the nuclear material currently in storage at the Canada Science and Technology Museum.

Like any museum, only a small percentage of their collection is on display at any given time. So we were very pleased when they invited us to take in the entire collection.

Below are some of the museum’s nuclear-related artifacts, which few people have ever seen.

Original electronic tower from the ZEEP nuclear reactor at Chalk River, c. 1945.
Original electronic tower from the ZEEP nuclear reactor at Chalk River, c. 1945.
The triple axis spectrometer (c. 1956) designed and used by Nobel Prize Winner, Betrum Brockhouse.
Triple axis spectrometer (c. 1956) designed and used by Nobel Prize winner, Bertram Brockhouse.
1920s Dental X-ray machine.
1920s dental x-ray machine.
1950s X-ray shoe fitter.
1950s x-ray shoe fitter.
(Front)  ZEEP fuel rod prototype designed by George Klein c. 1945 (Back) The 100,00th CANDU Fuel Bundle presented to Prime Minister Trudeau in 1975.
(Front) ZEEP fuel rod prototype designed by George Klein c. 1945. (Back) The 100,000th CANDU fuel bundle presented to Prime Minister Trudeau in 1975.
The "Advanced CANDU Reactor (ACR) Model" on loan to CSTMC from A‎ECL at Chalk River.
The “Advanced CANDU Reactor (ACR) model” on loan from CNL at Chalk River.