Tag Archives: OPG

Uncategorized

Nuclear industry steps in after GM layoffs

General Motors plant in Oshawa, Ontario.

Ontario’s nuclear industry has reached out to help General Motors (GM) workers affected by the company’s planned closure of their Oshawa, Ontario, plant.

On November 26, GM announced that it would close its Oshawa assembly plant the end of 2019 as part of global restructuring. The closure would affect more than 2,500 jobs at the Oshawa plant.

The layoffs will have a major impact on the Oshawa economy.  According to Unifor, the union representing GM workers, every job at the Oshawa plant is tied to seven spin-off jobs in the community.

But just four days later, Ontario’s nuclear industry stepped in to let Unifor know that it would do what it can to ease the blow to the community and workers.

Bruce Power and Ontario Power Generation (OPG) sent a joint letter to the leadership of Unifor, expressing support for workers at GM Oshawa.

“Bruce Power and Ontario Power Generation recognize the role the auto industry and the Oshawa GM plant have played in Ontario’s economy for decades and we believe that we can play a part in keeping these highly skilled people in high-paying jobs in the nuclear industry,” the letter stated.

“Skilled tradespeople and skilled workers are one of our province’s biggest assets and there is a deficit being predicted in the Ontario labour market. Bruce Power, OPG and the Ontario nuclear fleet support employment and training opportunities for skilled workers.”

At over $25 billion, the refurbishment of Ontario’s nuclear power plants is the largest clean-technology investment in the country.

The refurbishment projects will put thousands of people to work and ensure economic prosperity for the province of Ontario for years to come.

“OPG’s Darlington Refurbishment Project and Bruce Power’s Major Component Replacement (MCR) Program are the two largest infrastructure projects in Ontario. We understand the value of a trained, skilled workforce for Ontario and we look forward to playing a part in keeping Ontario’s workforce employed,” the letter concluded.

CNA2019

Innovation in action panel at CNA2019

Left to right: Jeff Lyash, Gaëtan Thomas, Mike Rencheck

On Thursday, February 28, at 2:00 p.m., Jeff Lyash, Mike Rencheck and Gaëtan Thomas will take the stage at CNA2019 to discuss new nuclear, innovation in action.

Not everyone realizes the full range of climate and health solutions offered by nuclear technology. Many of these solutions flow from the operations of nuclear utilities. Refurbishment and Major Component Replacement are sources of highly innovative advances in environmental protection, clean energy generation, and life-saving medical isotopes. New Nuclear is innovative, relevant to society’s needs, capable, job-creating, and impactful.

Jeff Lyash is President and CEO of Ontario Power Generation (OPG)  Jeff was formerly the President of CB&I Power where he was responsible for a full range of engineering, procurement and construction of multi-billion dollar electrical generation projects in both domestic and international markets. He also provided operating plant services for nuclear, coal, gas, oil and renewable generation.

Mike Rencheck is President and CEO of Bruce Power. Over the past 30+ years, Mike has served in a number of roles and most recently was the Deputy Chief Operating Officer for AREVA overseeing its extensive Global capital portfolio of nuclear and renewable projects. Prior to this, he served as President and CEO of AREVA Inc. in North America leading its diverse nuclear services business in Canada and the United States with a workforce of about 5,000 people.

Gaëtan Thomas is President and CEO of New Brunswick Power. He is a committed industry leader and agent of change, driven by his deep connection to customer and employee grassroots.

His vision for NB Power includes a made-in-New Brunswick smart grid supported by customer-centric technology and a workforce aimed at creating a greener, more sustainable province. This plan, now in its fourth year, is helping to reduce reliance on fossil fuels, lowering costs and keeping customer rates low and stable.

For more information about CNA2019 visit https://cna.ca/cna2019/.

CNA2019

Views of the next generation panel at CNA2019

Top to bottom: Bethel Afework, Matthew Mairinger, Taylor McKenna

Join Bethel Afework, Matthew Mairinger, and Taylor McKenna at CNA2019 as they discuss the next generation in nuclear on Thursday, February 28, at 9:00 a.m.

What better way to start CNA2019’s “New Nuclear” theme, then to hear from the next generation – for whom the excitement and challenge of being in a nuclear-related career is contagious. The promise of nuclear technology in finding solutions to society’s needs will require greater understanding and acceptance of others in their generation. How do they see the future?

Bethel Afework is a technical write at the University of Calgary. She is interested in sustainable resources and carbon low solutions. She believes that solar and nuclear are powerful resources and wants to communicate these ideas better to the public to move towards a more sustainable future.

Matthew Mairinger is the North American Young Generation in Nuclear (NAYGN) Canadian Affairs Chair, NAYGN Canadian regional lead, and president of the NAYGN Durham chapter. He is a Professional Engineer and received his Bachelor of Engineering in Nuclear Engineering degree from University of Ontario Institute of Technology (UOIT). He has over five years of experience working at Ontario Power Generation and is the senior advisor in stakeholder relations at the Pickering nuclear plant.

Taylor McKenna is the Project Manager for Ontario’s Nuclear Advantage, which works to build relationships between the government and the nuclear industry. Previously she worked as a government relations advisor for Bruce Power and as a legislative assistant at Queen’s Park.

For more information about CNA2019 visit https://cna.ca/cna2019/.

Uncategorized

CNA a proud signatory to Equal by 30

The Canadian Nuclear Association is proud to be a signatory to Equal by 30, along with our members Bruce Power, Ontario Power Generation and Canadian Nuclear Laboratories.

Equal by 30 commits Canada and other participating countries to the goal of achieving equal pay, equal leadership and equal opportunities by 2030 in the energy sector.

CNA President John Barrett was on hand for the launch of the campaign at this year’s Clean Energy Ministerial (CEM) in Copenhagen, Denmark.

Check out the new Equal by 30 website to learn more about the importance of gender equality in the clean energy sector.

Uncategorized

Being Prepared for the Unexpected: The Nuclear Industry is Disaster Ready

In 2011, one of the most powerful earthquakes ever recorded opened-up the sea floor and sent a wall of water rushing along the Japanese coast knocking out the Fukushima Daiichi nuclear power plant. Images of the devastation made international headlines and raised concern over the safety and preparedness of nuclear power plants in the event of a disaster.

Recently, the government of Ontario announced that it is updating the province’s nuclear response plan. It will have a very solid and impressive basis on which to build.

Although the risk of a tsunami-induced accident at Canada’s nuclear power sites is close to non-existent, being prepared for the unexpected has been at the core of the nuclear industry’s commitment to safety. In fact, within a year of the Fukushima accident, Canada’s nuclear operators took additional steps, including a full-scale emergency exercise that was hosted by Ontario Power Generation (OPG) at its Darlington operations. The exercise brought together emergency responders from all levels of government and OPG, to test accident readiness.

Safety is a crucial pillar of success, and that is why the industry continues to add new measures to existing emergency response plans. As one example, OPG installed flood barriers to protect low-lying equipment in the event of a severe weather disaster. During the Fukushima event, an explosion took place because of a buildup of hydrogen. So OPG installed passive autocatalytic recombiners to limit the risk of a buildup of hydrogen should a leak ever occur.

Bruce Power, Ontario’s other nuclear generator, has built upon its safety foundation post-Fukushima, making additional investments in a suite of back-up generators and fire trucks. A new Emergency Management Centre, equipped with its own back-up power supply was also set up, and last October Bruce Power hosted 500 people from over two dozen agencies to take part in a week-long emergency preparedness drill called Exercise Huron Resolve.

This week-long exercise involved various industry partners and government including The Ministry of Health and Long Term Care, The Ontario Provincial Police, The Ministry of Labour’s Radiation Protection Services and OFMEM’s Provincial Emergency Operations Centre, which is based in Toronto.

Outside of Ontario, in New Brunswick, the Point Lepreau nuclear plant recently conducted  two large-scale emergency response exercises. A two-day simulation, in 2015, was conducted in partnership between NB Power and New Brunswick’s Emergency Measures Organization and this past May the company teamed up with the Canadian Nuclear Safety Commission (CNSC) to run through security emergency response exercises.

It is important to point out that, prior to Fukushima, nuclear emergency response plans were already in place. In fact, the nuclear industry’s commitment to emergency planning has been in place since the operation of nuclear power plants began, over fifty years ago. Since that time, operators have continued to build upon best practices.

While the geography of Canada makes it highly unlikely that an earthquake and ensuing tsunami, like the one that swallowed the Japanese coast, could ever occur here, we know that we must invest and demonstrate our commitment to planning and preparing for the unexpected. Our people are our number one asset, living and working in the communities they serve. Keeping our communities safe isn’t just part of our job it’s part of our community responsibility. One that we take pride in.

Uncategorized

Celebrating Canada 150: Nuclear Science and Innovation

From the birthplace of Confederation, Charlottetown, to the home of the nation’s capital, Ottawa, the fireworks send off to mark Canada’s 150th birthday is only one in a series of celebrations to acknowledge the storied history of our country. As Canada officially celebrates a century and a half we wanted to look back the contributions that our nuclear scientists have made to our country and beyond.

The latest numbers from the Canadian Cancer Society predict that 2 out of every 5 Canadians will develop cancer in their lifetime. While cancer can target people at any age, people over 50 are at the greatest risk for developing some form of cancer. Over the years, numerous advancements have been made in the field of cancer research but the work done by a team of researchers in Saskatoon arguably paved the way for today’s cancer treatments.

Sylvia Fedoruk, a pioneer in the field of medical physics, was the only woman in Canada working in the field in the 1950s. Fedoruk was a member of a University of Saskatchewan team working on cobalt-60 radiation therapy. Under the guidance of Dr. Harold Johns, Fedoruk and others were the first group in Canada to successfully treat a cancer patient using cobalt-60 radiation therapy. Thanks to their pioneering work, over 70 million people around the world have benefited from this type of treatment. In fact, the benefits of cobalt-60 machines go far beyond the Canadian border as cobalt-60 radiation therapy machines have been used all over the world to treat cancer patients.

Building on the early work of scientists, advancements in nuclear medicine include the use of alpha therapies. Through a targeted approach, cancer cells are blasted from the inside out, minimizing the damage to healthy tissues. These alpha-emitting isotopes are thought to be especially effective for people that are dealing with late-stage or metastasized cancers (cancer that has spread from one part of the body to another) and could be the basis for the next wave of cancer treatments.

“It’s a magic bullet for people in the cancer field because it has the beauty of sparing healthy tissues and finding and weeding out tiny tumours,” according to Dr. Tom Ruth, Special Advisor, Emeritus, TRIUMF.

Clean, reliable and sustainable energy is one of the pillars of the United Nations Sustainable Development Goals. Canada’s nuclear industry is a driving force of the economy, contributing over 6 billion dollars to the country and employing over 60,000 people both directly and indirectly.

Our CANDU technology helped spur opportunities for power generation. The Pickering nuclear power plant came on line in 1971 just four years after Douglas Point came online. Ontario was the first province to introduce nuclear into its electrical generation, New Brunswick would soon follow suit in the early 1980s. The efficiency and cleanliness of nuclear allowed Ontario to reduce emissions and provide energy security following the province’s decision to axe coal from electrical generation in 2014, eliminating smog days from the province. It is estimated that thanks to nuclear power production in Ontario alone, 45 million tonnes of carbon is removed from the atmosphere, equal to 10 million cars.

Canada’s history with nuclear generation goes back over half a century ago, when a team of engineers in Montreal developed the first reactor known as the National Research Experimental (NRX) reactor. The NRX, which came on line in 1947, led the way for research into isotopes and positioned Canada as a world leader in supplying the much-needed medical material all over the world ever since.

Communities are at the very core of the nuclear industry and you don’t need to look further than Cameco to see the positive impacts that community partnerships have. For over twenty-five years, Cameco Corporation has partnered with communities across Northern Saskatchewan as the largest private employer of First Nations and Metis people in Canada.

“More or less our community can have a future. Because of our young populations we need to be more sustaining and more certain, and this is one of the things that industry has brought to us, a lot of hope,” states Mike Natomagnan, the mayor of Pinehouse Lake and a former Cameco worker.

Canada’s nuclear industry continues to serve as a model for leadership, using science to find solutions to real world challenges. Our commitment to sustainable development and economic well-being is equal to our commitment to research and innovation. Powering the next generation of space travel is just one of the missions that Ontario Power Generation (OPG) is investing in.

A partnership between Technical Solutions Management (TSM), Ontario Power Generation (OPG), Canadian Nuclear Laboratories (CNL) and the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) would support and augment the Department of Energy’s program to renew the production of Pu-238, allowing scientists to continue their exploration of our solar system and beyond.

“Our hope is to land a contract to expand the amount of Pu-238 that is available for space exploration,” stated Glen Elliott, Director, Business Development, Ontario Power Generation.

If approved, within five years, we could be ready to power future space ventures with Pu-238 partially produced in Canada. The concept would rely on a commercial reactor to produce the necessary isotope, specifically OPG’s Darlington reactor.

The future of nuclear science will continue to explore ocean health and the ecosystems that are vital to our food chain thanks to research and work with isotopes. Dr. Sherwood Lollar was recently appointed to the Order of Canada for her work in geochemistry looking at the movement of groundwater and tracking environmental contaminants.

Through innovation, we will welcome the next generation of reactors. These include SNC-Lavalin’s Advanced Fuel CANDU Reactor (AFCR) which takes the used fuel from light water reactors and repurposes it as new fuel for the CANDU, thus effectively recycling an important energy-rich waste stream, while reducing considerably the volume of CANDU reactor waste. The AFCR may shortly see the light of day in China.

The next generation also includes the development of small modular reactors (SMRs), ensuring an energy future that allows for healthier communities, removing diesel from the energy mix, continuing to cut back on greenhouse gas emissions and opening the door to cut carbon from the transportation sector through the development of hydrogen fuels. The heat potential locked in future reactors could provide opportunities for community agriculture production in the form of greenhouses, affording people healthier food regardless of where they live.

Our commitment to science and research holds the promise of continued advancements and leadership in health, the environment and energy. As we look back on the first 150 years of investments in nuclear science and technology, we are excited to see what the next 150 will bring and we are confident it will continue to build on a better tomorrow and a stronger Canada for all of us.