Tag Archives: OPG

Uncategorized

Being Prepared for the Unexpected: The Nuclear Industry is Disaster Ready

In 2011, one of the most powerful earthquakes ever recorded opened-up the sea floor and sent a wall of water rushing along the Japanese coast knocking out the Fukushima Daiichi nuclear power plant. Images of the devastation made international headlines and raised concern over the safety and preparedness of nuclear power plants in the event of a disaster.

Recently, the government of Ontario announced that it is updating the province’s nuclear response plan. It will have a very solid and impressive basis on which to build.

Although the risk of a tsunami-induced accident at Canada’s nuclear power sites is close to non-existent, being prepared for the unexpected has been at the core of the nuclear industry’s commitment to safety. In fact, within a year of the Fukushima accident, Canada’s nuclear operators took additional steps, including a full-scale emergency exercise that was hosted by Ontario Power Generation (OPG) at its Darlington operations. The exercise brought together emergency responders from all levels of government and OPG, to test accident readiness.

Safety is a crucial pillar of success, and that is why the industry continues to add new measures to existing emergency response plans. As one example, OPG installed flood barriers to protect low-lying equipment in the event of a severe weather disaster. During the Fukushima event, an explosion took place because of a buildup of hydrogen. So OPG installed passive autocatalytic recombiners to limit the risk of a buildup of hydrogen should a leak ever occur.

Bruce Power, Ontario’s other nuclear generator, has built upon its safety foundation post-Fukushima, making additional investments in a suite of back-up generators and fire trucks. A new Emergency Management Centre, equipped with its own back-up power supply was also set up, and last October Bruce Power hosted 500 people from over two dozen agencies to take part in a week-long emergency preparedness drill called Exercise Huron Resolve.

This week-long exercise involved various industry partners and government including The Ministry of Health and Long Term Care, The Ontario Provincial Police, The Ministry of Labour’s Radiation Protection Services and OFMEM’s Provincial Emergency Operations Centre, which is based in Toronto.

Outside of Ontario, in New Brunswick, the Point Lepreau nuclear plant recently conducted  two large-scale emergency response exercises. A two-day simulation, in 2015, was conducted in partnership between NB Power and New Brunswick’s Emergency Measures Organization and this past May the company teamed up with the Canadian Nuclear Safety Commission (CNSC) to run through security emergency response exercises.

It is important to point out that, prior to Fukushima, nuclear emergency response plans were already in place. In fact, the nuclear industry’s commitment to emergency planning has been in place since the operation of nuclear power plants began, over fifty years ago. Since that time, operators have continued to build upon best practices.

While the geography of Canada makes it highly unlikely that an earthquake and ensuing tsunami, like the one that swallowed the Japanese coast, could ever occur here, we know that we must invest and demonstrate our commitment to planning and preparing for the unexpected. Our people are our number one asset, living and working in the communities they serve. Keeping our communities safe isn’t just part of our job it’s part of our community responsibility. One that we take pride in.

Uncategorized

Celebrating Canada 150: Nuclear Science and Innovation

From the birthplace of Confederation, Charlottetown, to the home of the nation’s capital, Ottawa, the fireworks send off to mark Canada’s 150th birthday is only one in a series of celebrations to acknowledge the storied history of our country. As Canada officially celebrates a century and a half we wanted to look back the contributions that our nuclear scientists have made to our country and beyond.

The latest numbers from the Canadian Cancer Society predict that 2 out of every 5 Canadians will develop cancer in their lifetime. While cancer can target people at any age, people over 50 are at the greatest risk for developing some form of cancer. Over the years, numerous advancements have been made in the field of cancer research but the work done by a team of researchers in Saskatoon arguably paved the way for today’s cancer treatments.

Sylvia Fedoruk, a pioneer in the field of medical physics, was the only woman in Canada working in the field in the 1950s. Fedoruk was a member of a University of Saskatchewan team working on cobalt-60 radiation therapy. Under the guidance of Dr. Harold Johns, Fedoruk and others were the first group in Canada to successfully treat a cancer patient using cobalt-60 radiation therapy. Thanks to their pioneering work, over 70 million people around the world have benefited from this type of treatment. In fact, the benefits of cobalt-60 machines go far beyond the Canadian border as cobalt-60 radiation therapy machines have been used all over the world to treat cancer patients.

Building on the early work of scientists, advancements in nuclear medicine include the use of alpha therapies. Through a targeted approach, cancer cells are blasted from the inside out, minimizing the damage to healthy tissues. These alpha-emitting isotopes are thought to be especially effective for people that are dealing with late-stage or metastasized cancers (cancer that has spread from one part of the body to another) and could be the basis for the next wave of cancer treatments.

“It’s a magic bullet for people in the cancer field because it has the beauty of sparing healthy tissues and finding and weeding out tiny tumours,” according to Dr. Tom Ruth, Special Advisor, Emeritus, TRIUMF.

Clean, reliable and sustainable energy is one of the pillars of the United Nations Sustainable Development Goals. Canada’s nuclear industry is a driving force of the economy, contributing over 6 billion dollars to the country and employing over 60,000 people both directly and indirectly.

Our CANDU technology helped spur opportunities for power generation. The Pickering nuclear power plant came on line in 1971 just four years after Douglas Point came online. Ontario was the first province to introduce nuclear into its electrical generation, New Brunswick would soon follow suit in the early 1980s. The efficiency and cleanliness of nuclear allowed Ontario to reduce emissions and provide energy security following the province’s decision to axe coal from electrical generation in 2014, eliminating smog days from the province. It is estimated that thanks to nuclear power production in Ontario alone, 45 million tonnes of carbon is removed from the atmosphere, equal to 10 million cars.

Canada’s history with nuclear generation goes back over half a century ago, when a team of engineers in Montreal developed the first reactor known as the National Research Experimental (NRX) reactor. The NRX, which came on line in 1947, led the way for research into isotopes and positioned Canada as a world leader in supplying the much-needed medical material all over the world ever since.

Communities are at the very core of the nuclear industry and you don’t need to look further than Cameco to see the positive impacts that community partnerships have. For over twenty-five years, Cameco Corporation has partnered with communities across Northern Saskatchewan as the largest private employer of First Nations and Metis people in Canada.

“More or less our community can have a future. Because of our young populations we need to be more sustaining and more certain, and this is one of the things that industry has brought to us, a lot of hope,” states Mike Natomagnan, the mayor of Pinehouse Lake and a former Cameco worker.

Canada’s nuclear industry continues to serve as a model for leadership, using science to find solutions to real world challenges. Our commitment to sustainable development and economic well-being is equal to our commitment to research and innovation. Powering the next generation of space travel is just one of the missions that Ontario Power Generation (OPG) is investing in.

A partnership between Technical Solutions Management (TSM), Ontario Power Generation (OPG), Canadian Nuclear Laboratories (CNL) and the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL) would support and augment the Department of Energy’s program to renew the production of Pu-238, allowing scientists to continue their exploration of our solar system and beyond.

“Our hope is to land a contract to expand the amount of Pu-238 that is available for space exploration,” stated Glen Elliott, Director, Business Development, Ontario Power Generation.

If approved, within five years, we could be ready to power future space ventures with Pu-238 partially produced in Canada. The concept would rely on a commercial reactor to produce the necessary isotope, specifically OPG’s Darlington reactor.

The future of nuclear science will continue to explore ocean health and the ecosystems that are vital to our food chain thanks to research and work with isotopes. Dr. Sherwood Lollar was recently appointed to the Order of Canada for her work in geochemistry looking at the movement of groundwater and tracking environmental contaminants.

Through innovation, we will welcome the next generation of reactors. These include SNC-Lavalin’s Advanced Fuel CANDU Reactor (AFCR) which takes the used fuel from light water reactors and repurposes it as new fuel for the CANDU, thus effectively recycling an important energy-rich waste stream, while reducing considerably the volume of CANDU reactor waste. The AFCR may shortly see the light of day in China.

The next generation also includes the development of small modular reactors (SMRs), ensuring an energy future that allows for healthier communities, removing diesel from the energy mix, continuing to cut back on greenhouse gas emissions and opening the door to cut carbon from the transportation sector through the development of hydrogen fuels. The heat potential locked in future reactors could provide opportunities for community agriculture production in the form of greenhouses, affording people healthier food regardless of where they live.

Our commitment to science and research holds the promise of continued advancements and leadership in health, the environment and energy. As we look back on the first 150 years of investments in nuclear science and technology, we are excited to see what the next 150 will bring and we are confident it will continue to build on a better tomorrow and a stronger Canada for all of us.

Uncategorized

Powering Space Missions with Nuclear Science

Recently, the Trump administration inked its commitment to future space missions with a $19.5 billion dollar budget announcement to the U.S. Space Agency. Among the projects NASA has slated include a human mission to Mars sometime after 2030 and a Canada-U.S. partnership could help to provide the power to get there.

Studying the solar system is no easy feat. Minimal sunlight and severe weather conditions are just two challenges that face outer space explorations. On Mars, nighttime temperatures can fall below -70 degrees Celsius and violent dust storms can destroy solar panels. Harsh environments and ever evolving missions require an effective power and heat source for spacecraft.

Enter nuclear science and radioisotope power systems.

Billions of miles away from a gas station or electric charging station, radioisotope power systems (RPS) have allowed scientists to research and study the limits of our solar system. Electricity is produced from the decay of the isotope plutonium 238 (Pu-238). As the isotope decays it gives off a tremendous amount of heat energy which is converted into electricity. With a half-life of 88 years, a radioisotope power system is able to provide continuous energy for long term deep space missions. As compared to solar power, an RPS can reach into deep space where solar power is ineffective.

However, there is a limited supply of Pu-238 that is needed for deep space research leaving the future of deep space exploration potentially in the dark.

Enter a Canadian-U.S. collaboration and a proposal to shift space research into high gear. A partnership between Technical Solutions Management (TSM), Ontario Power Generation (OPG), Canadian Nuclear Laboratories (CNL) and Pacific Northwest National Labs (PNNL) would support and augment the U.S. Department of Energy’s (DOE) program to renew the production of Pu-238, allowing scientists to continue their exploration of the solar system.

“Our hope is to land a contract to expand the amount of Pu-238 that is available for space exploration,” according to Glen Elliott, Director, Business Development, Ontario Power Generation.

Mars Rover: Curiosity

If approved, the mission could be well on its way to powering future space ventures in the next 5 years, by 2022. The concept would rely on a commercial reactor to produce the necessary isotope, specifically OPG’s Darlington reactor.

“The flexibility of the plan makes it ideal. Depending on the mission requirements, it could be scaled up or down customizing the amount of fuel needed,” according to Elliott. “The Darlington reactor has online fueling capability and an ideal neutron flux so you can precisely control the irradiation time.”

A neutron flux is comprised of two elements; the speed and distance that the neutrons cover. Like football players on a field, the neutron flux is the speed at which the players are running and the total distance of the field that they cover.

The other benefit of the Darlington reactor is that it can produce the fuel needed for radioisotope power systems while performing its primary objective of producing electricity.

“This project is just another example of the broad economic and societal benefits of nuclear power. It provides clean, low-cost power, it helps in the medical world and if successful can be a part of the next generation of space travel,” said Jeff Lyash, President & Chief Executive Officer, Ontario Power Generation.

The proposal would help ensure an adequate global supply of Pu-238 for space missions and strengthen a Canada-U.S. partnership while creating jobs, boosting the economy and advancing the field of science exploration.

Uncategorized

ONTARIO’S NUCLEAR ADVANTAGE: LOW-COST ELECTRICITY, JOBS & GROWTH; HEALTH & CLEAN AIR

Ontario has a nuclear advantage. Yet many in the province don’t realize it or how much it benefits them and their everyday lives.
When we flick on the lights, turn on the computer, or charge electric vehicles, we give no thought to how our electricity is produced. We should take comfort in knowing that nuclear power is the backbone of Ontario’s electricity system.

Nuclear power provides families and businesses with a low-cost, safe, reliable source of electricity, and it makes our Energy Star appliances even cleaner when they run on low GHG-emitting Nuclear. For those who like solid facts: Ontario’s nuclear plants supply over 13,000 MW of clean power – or, about 60% of Ontarians’ needs every day of the week, every week of the year. What’s more, as Ontario’s electricity demand increases, with people turning to electric vehicles and the province growing in population and economic activity, nuclear power can expand to ensure our electricity stays clean.

When we think of the challenges of climate change, and the need for carbon-pricing, we do not automatically realize that nuclear power is virtually GHG-emissions-free. The clean electricity from nuclear generation is not impacted by cap-and-trade costs.

When we urge our governments to do something about the effects of climate change, we don’t always grasp that Ontario’s ability to end coal-fired generation was largely made possible by the return to service of two Bruce Power reactors, and the return to commercial operation of units 1 and 4 at Pickering.
The clean, smog-free air in parts of southern Ontario is a blessing to those with asthma or breathing problems. Today, Ontario has over 90% of its electricity powered by clean energy sources. Nuclear shoulders 2/3rds of that.

When we think of concerns about hydro bills, we often tend to lump all generation sources together. We assume they’re all equally to blame for producing expensive electricity. But that’s not the fact. Nuclear generation in Ontario is currently paid 6.6 cents/kWh compared to the average residential price of 11 cents/kWh, according to the Ontario Energy Board. And the power that’s bought by Ontarian consumers is reliable, not intermittent, and not dependent on the fluctuations of weather. Thankfully.

When we think of friends and family who have undergone treatment for cancer and when we assume that the medical equipment used around them is safely sterilized, we don’t say thank goodness for nuclear reactors. But we should. The reactors at Bruce Power and OPG’s Pickering plant produce 70% of the world’s Cobalt-60, used to attack cancer cells. Cobalt-60 is also used to sterilize gowns, gloves, implantable devices and syringes in hospitals in Ontario and around the world. What other energy sources treat cancer and save lives? Nuclear does.

When we think of high-tech, good-paying jobs for our families and children, we seldom look first to Ontario’s nuclear industry. But do Ontarians realize how many jobs are supported by the nuclear industry and how much communities benefit from having companies in the nuclear supply chain? The nuclear industry in Canada contributes over $6 billion annually to the economy and supports 60,000 direct and indirect jobs. Many of these are in Ontario, and they stay in Ontario because of the expertise and high-quality manufacturing and engineering skills required by the industry.

When it comes to innovation in advanced energy technologies, you only have to cite the potential of small modular reactors (SMRs) or the next generation of inherently safe reactors that recycle fuel to feel the excitement among the younger generation of scientists, engineers, environmentalists. They see increasingly what new innovations in nuclear can do to bring reliable, safe, emissions-free energy – in the quantities needed – to an energy-hungry world desperately wanting more. They will be the generation to deliver this extraordinary benefit to humanity.
Take all of these and add them up. What you get is Ontario’s incredible nuclear advantage. Time to recognize this and capitalize on it. Nuclear provides solutions to the pressing needs of today and tomorrow. Time to think afresh about nuclear and its contribution to growth, to the environment, to an innovative, clean energy future.

An opportunity for such thinking is the Ontario Government’s forthcoming Long-Term Energy Plan. This is where Ontario’s nuclear advantage is established, underpinned and presented imaginatively for the future.

For our part, the Canadian Nuclear Association (CNA) is proud to launch a new website that promotes fact-based awareness and understanding of Canada’s nuclear success story: www.ontariosnuclearadvantage.com Ontario’s world-class nuclear sector is something of which Ontarians and all Canadians should be proud.

Uncategorized

Setting the Record Straight on the Price of Electricity

By John Barrett
President and CEO
Canadian Nuclear Association

Environmental Defence has a new online campaign in which they are trying to pin the blame for Ontario’s electricity costs on nuclear, while at the same time ignoring nuclear’s role in helping Ontario’s landmark achievement of ending coal-fired electricity generation.

These alternative facts have been discredited by many, including the findings of Ontario’s Auditor General’s 2015 report on electric power system planning.

On electricity prices, the low cost of nuclear was recently highlighted in a news release from the Ontario Energy Board, which indicated nuclear accounted for only 38 per cent of the Global Adjustment while generating 59 per cent of the electricity.
In 2016, nuclear power generated 61% of Ontario’s electricity at well below the amounts paid to other generators. In fact, the average price of nuclear was 6.6 cents per kWh compared to the average residential price of 11 cents per kWh.

Wind and solar make up a small amount of Ontario’s electricity bill because they make up a small amount of Ontario’s electricity grid. Wind generated only six per cent of Ontario’s electricity in 2016 and solar less than one per cent. Despite this modest output, wind and solar nevertheless accounted for 26 per cent of the Global Adjustment.

There is a myth that, due to the capital investments required in nuclear power, the consequence is a high price of power. This simply isn’t true. That’s because nuclear facilities operate for decades and generate large volumes of electricity on a consistent basis. Ontario’s nuclear facilities have a demonstrated track-record of high reliability. That’s why the province is reinvesting in them now.

Environmental Defence has also failed to mention nuclear’s important role in Ontario’s phase-out of coal in 2014 and ending smog days across the province, suggesting it was new wind and solar alone that got the job done.

A fact check would show that between 2000 and 2013, nuclear-powered electrical generation rose 20 percent in Ontario, coinciding with a 27 percent drop in coal-fired electricity. During the same period, non-hydro renewables increased to 3.4 percent from one percent. This major transition to a cleaner Ontario could not have happened without nuclear.

During that period, Bruce Power doubled its fleet of operating reactors from four to eight, becoming the world’s largest nuclear generating station. While more renewable energy did come on line, Bruce Power estimates they provided 70% of the carbon free energy needed to replace the power from the shutdown of coal plants.

The long-term investment programs currently underway across Ontario’s nuclear fleet, including Pickering, Darlington and Bruce Power, will secure this low-cost source of electricity over the long-term, while meeting our needs today.

Nuclear-generated electricity was the right choice for Ontario decades ago. It remains the right choice today.

OPG and Bruce Power recognize the cost of electricity for Ontario families and businesses is an important issue across the Province. Both companies are committed to clean air and continuing to provide low cost electricity for Ontario homes and businesses in the short, medium and long-term.

Uncategorized

Cost of Nuclear Power in Ontario

The Ontario Energy Board (OEB) has released its latest report which tells customers how much their electricity costs.

What you pay is in part related to where you get your electricity from.  In Ontario, the diversified energy mix is made up of nuclear, hydro, fossil fuels, solar and wind.  Each source has a different cost when it comes to producing energy.  That applies to all energy sources.nuclear-expense-michelle-01

The OEB report confirms that low-carbon nuclear is low-cost to ratepayers.  Electricity generated by nuclear power is almost 7 times most cost-effective than solar.

In recent years, nuclear power has supplied Ontarians with almost 60% of their electricity. The Ontario government’s commitment to refurbish reactors at both Darlington and Bruce shows the province believes nuclear energy – with its minimal greenhouse gas emissions and small land footprint – is not only good for the environment, but also good for ratepayers.

According to Ontario Power Generation (OPG), investing in nuclear means investing in affordable power for the future.

“The price of power from the refurbished station is expected to be between 7 and 8 cents per kilowatt hour,” according to OPG.  The refurbishment assures another 25 to 30 years of operation.

Links

To see how much of Ontario’s clean electricity is produced by the province’s nuclear reactors – in real time – visit www.live.gridwatch.ca

To see how changes to the electricity supply powering your home affects your cost of electricity and the quantity of CO2 emissions produced – try the Energy Calculator at www.brucepower.com  (“How is your home powered?”)