Tag Archives: OPG

CNA2017

Powering Space Missions with Nuclear Science

Recently, the Trump administration inked its commitment to future space missions with a $19.5 billion dollar budget announcement to the U.S. Space Agency. Among the projects NASA has slated include a human mission to Mars sometime after 2030 and a Canada-U.S. partnership could help to provide the power to get there.

Studying the solar system is no easy feat. Minimal sunlight and severe weather conditions are just two challenges that face outer space explorations. On Mars, nighttime temperatures can fall below -70 degrees Celsius and violent dust storms can destroy solar panels. Harsh environments and ever evolving missions require an effective power and heat source for spacecraft.

Enter nuclear science and radioisotope power systems.

Billions of miles away from a gas station or electric charging station, radioisotope power systems (RPS) have allowed scientists to research and study the limits of our solar system. Electricity is produced from the decay of the isotope plutonium 238 (Pu-238). As the isotope decays it gives off a tremendous amount of heat energy which is converted into electricity. With a half-life of 88 years, a radioisotope power system is able to provide continuous energy for long term deep space missions. As compared to solar power, an RPS can reach into deep space where solar power is ineffective.

However, there is a limited supply of Pu-238 that is needed for deep space research leaving the future of deep space exploration potentially in the dark.

Enter a Canadian-U.S. collaboration and a proposal to shift space research into high gear. A partnership between Technical Solutions Management (TSM), Ontario Power Generation (OPG), Canadian Nuclear Laboratories (CNL) and Pacific Northwest National Labs (PNNL) would support and augment the U.S. Department of Energy’s (DOE) program to renew the production of Pu-238, allowing scientists to continue their exploration of the solar system.

“Our hope is to land a contract to expand the amount of Pu-238 that is available for space exploration,” according to Glen Elliott, Director, Business Development, Ontario Power Generation.

Mars Rover: Curiosity

If approved, the mission could be well on its way to powering future space ventures in the next 5 years, by 2022. The concept would rely on a commercial reactor to produce the necessary isotope, specifically OPG’s Darlington reactor.

“The flexibility of the plan makes it ideal. Depending on the mission requirements, it could be scaled up or down customizing the amount of fuel needed,” according to Elliott. “The Darlington reactor has online fueling capability and an ideal neutron flux so you can precisely control the irradiation time.”

A neutron flux is comprised of two elements; the speed and distance that the neutrons cover. Like football players on a field, the neutron flux is the speed at which the players are running and the total distance of the field that they cover.

The other benefit of the Darlington reactor is that it can produce the fuel needed for radioisotope power systems while performing its primary objective of producing electricity.

“This project is just another example of the broad economic and societal benefits of nuclear power. It provides clean, low-cost power, it helps in the medical world and if successful can be a part of the next generation of space travel,” said Jeff Lyash, President & Chief Executive Officer, Ontario Power Generation.

The proposal would help ensure an adequate global supply of Pu-238 for space missions and strengthen a Canada-U.S. partnership while creating jobs, boosting the economy and advancing the field of science exploration.

Uncategorized

Setting the Record Straight on the Price of Electricity

By John Barrett
President and CEO
Canadian Nuclear Association

Environmental Defence has a new online campaign in which they are trying to pin the blame for Ontario’s electricity costs on nuclear, while at the same time ignoring nuclear’s role in helping Ontario’s landmark achievement of ending coal-fired electricity generation.

These alternative facts have been discredited by many, including the findings of Ontario’s Auditor General’s 2015 report on electric power system planning.

On electricity prices, the low cost of nuclear was recently highlighted in a news release from the Ontario Energy Board, which indicated nuclear accounted for only 38 per cent of the Global Adjustment while generating 59 per cent of the electricity.
In 2016, nuclear power generated 61% of Ontario’s electricity at well below the amounts paid to other generators. In fact, the average price of nuclear was 6.6 cents per kWh compared to the average residential price of 11 cents per kWh.

Wind and solar make up a small amount of Ontario’s electricity bill because they make up a small amount of Ontario’s electricity grid. Wind generated only six per cent of Ontario’s electricity in 2016 and solar less than one per cent. Despite this modest output, wind and solar nevertheless accounted for 26 per cent of the Global Adjustment.

There is a myth that, due to the capital investments required in nuclear power, the consequence is a high price of power. This simply isn’t true. That’s because nuclear facilities operate for decades and generate large volumes of electricity on a consistent basis. Ontario’s nuclear facilities have a demonstrated track-record of high reliability. That’s why the province is reinvesting in them now.

Environmental Defence has also failed to mention nuclear’s important role in Ontario’s phase-out of coal in 2014 and ending smog days across the province, suggesting it was new wind and solar alone that got the job done.

A fact check would show that between 2000 and 2013, nuclear-powered electrical generation rose 20 percent in Ontario, coinciding with a 27 percent drop in coal-fired electricity. During the same period, non-hydro renewables increased to 3.4 percent from one percent. This major transition to a cleaner Ontario could not have happened without nuclear.

During that period, Bruce Power doubled its fleet of operating reactors from four to eight, becoming the world’s largest nuclear generating station. While more renewable energy did come on line, Bruce Power estimates they provided 70% of the carbon free energy needed to replace the power from the shutdown of coal plants.

The long-term investment programs currently underway across Ontario’s nuclear fleet, including Pickering, Darlington and Bruce Power, will secure this low-cost source of electricity over the long-term, while meeting our needs today.

Nuclear-generated electricity was the right choice for Ontario decades ago. It remains the right choice today.

OPG and Bruce Power recognize the cost of electricity for Ontario families and businesses is an important issue across the Province. Both companies are committed to clean air and continuing to provide low cost electricity for Ontario homes and businesses in the short, medium and long-term.

Uncategorized

Cost of Nuclear Power in Ontario

The Ontario Energy Board (OEB) has released its latest report which tells customers how much their electricity costs.

What you pay is in part related to where you get your electricity from.  In Ontario, the diversified energy mix is made up of nuclear, hydro, fossil fuels, solar and wind.  Each source has a different cost when it comes to producing energy.  That applies to all energy sources.nuclear-expense-michelle-01

The OEB report confirms that low-carbon nuclear is low-cost to ratepayers.  Electricity generated by nuclear power is almost 7 times most cost-effective than solar.

In recent years, nuclear power has supplied Ontarians with almost 60% of their electricity. The Ontario government’s commitment to refurbish reactors at both Darlington and Bruce shows the province believes nuclear energy – with its minimal greenhouse gas emissions and small land footprint – is not only good for the environment, but also good for ratepayers.

According to Ontario Power Generation (OPG), investing in nuclear means investing in affordable power for the future.

“The price of power from the refurbished station is expected to be between 7 and 8 cents per kilowatt hour,” according to OPG.  The refurbishment assures another 25 to 30 years of operation.

Links

To see how much of Ontario’s clean electricity is produced by the province’s nuclear reactors – in real time – visit www.live.gridwatch.ca

To see how changes to the electricity supply powering your home affects your cost of electricity and the quantity of CO2 emissions produced – try the Energy Calculator at www.brucepower.com  (“How is your home powered?”)

Uncategorized

Ontario Writes the Playbook for its Nuclear Refurbishment

Editorial - principlesOntario is preparing to refurbish 10 of its 18 nuclear reactors, beginning at the end of this year. This investment will extend the lives of the reactors, keeping their operation safe and effective for decades to come. It will also create thousands of jobs and inject much-needed  dollars into Ontario’s economy. The project comes in at half the cost of building new reactors – and is considerably cheaper over the long term than investing in solar, wind, or gas for a similar amount of power.

As Ontario Energy Minister Bob Chiarelli said in an interview with Global News, “The best cost deal in replacing the existing nuclear is to refurbish what we have.”

That said, refurbishment still comes at a cost: about $25 billion for the 15-year project. So, Ontario’s Long-Term Energy Plan for 2013, which announced the government’s decision for refurbishment, set out seven principles for the refurbishment – and everyone involved in it.

“Minimize commercial risk on the part of ratepayers and government”

The people and government of Ontario are making a large investment in nuclear power. They should receive the expected return on that investment without a great risk of having to invest further. The other six principles follow from this one.

“Mitigate reliability risks by developing contingency plans that include alternative supply options if contract and other objects are at risk of non-fulfillment”

Ontario has a diverse power mix. Electricity comes mainly from nuclear power, but hydro, renewables, and gas also play important roles. The province can also buy power from other provinces or states. So, while the Long-Term Energy Plan recognizes the refurbishment of nuclear power plants as the best long-term option, the province will also look at investing in these alternatives. Ontario’s recent agreement to share electricity with Quebec at certain times of the year may create more flexibility for the province.

“Entrench appropriate and realistic off-ramps and scoping”

One way of holding the operators and contractors to account involves “off-ramps” – contract terms that allow the province to limit or stop the project if it goes over budget.

Hold private sector operator accountable to the nuclear refurbishment schedule and price”

As the private-sector operator involved in the refurbishment project of the Bruce power plant, Bruce Power must ensure that the refurbishments stay on schedule and within budget; the company will not be in a position to simply pass additional expenses on to ratepayers.

“Require OPG to hold its contractors accountable to the nuclear refurbishment schedule and price”

Likewise, Ontario Power Generation (OPG) is contracting much of the refurbishment at the Darlington station to more specialized companies. A slowdown or cost overrun for any one of them could affect the overall timeline and budget. So, these companies are being held accountable as well.

“Make site, project management, regulatory requirements, and supply chain considerations and cost and risk containment, the primary factors in developing the implementation plan”

Robust project management is at the core of the refurbishment project. For example, at Darlington, OPG did an environmental assessment, which showed that the refurbishment would not have any significant adverse environmental effects. A safety review also demonstrated that the Darlington plant meets modern codes and standards and follows sound industry practices. Safety improvements recommended by both these assessments are now part of the Darlington Integrated Implementation Plan. Finally, an overall risk assessment demonstrated that Darlington is a safe and reliable power plant, and will continue to be after planned safety improvements. Similar measures are underway at the Bruce facility.

“Take smaller initial steps to ensure there is an opportunity to incorporate lessons learned from refurbishment including collaboration by operators”

The refurbishment project will begin with two reactors – one each at the Bruce and Darlington facilities. Through the 15 years of the project, no more than three reactors are planned to be under refurbishment at any one time. This will provide opportunities to assess each refurbishment, learn from it, and apply those lessons to the next ones.

Even the first refurbishments will benefit from experience – such as refurbishments at Bruce Power, at Point Lepreau in New Brunswick, and at the Wolsong 1 reactor in South Korea. OPG has also created a full-scale replica of the Darlington reactor vault for testing tools, training, and ensuring that the teams can coordinate in real time.

CNA2015

How OPG Stores Nuclear Waste Today

When people visit nuclear power plants, they’re often amazed to see nuclear workers standing right beside containers of used nuclear fuel.

“You can safely stand next to them, knowing the radiation is safely contained,” says Val Bevacqua. He is in charge of used-fuel storage for Ontario Power Generation (OPG), which owns all the Ontario reactors that generate electricity.

What makes them safe? They’re made of concrete more than half a metre thick and lined with steel plate. Each of these large, white bins stands about four metres high and weighs 60 tonnes – empty.

Once the spent fuel goes in, skilled workers weld the container shut, vacuum-dry the interior, pump it full with inert helium, and test rigorously for leaks.

Used fuel is very hot and radioactive. A robot removes the fuel bundles from the reactor and places them in bays that look like swimming pools. Despite the strong radiation, Val says, “just a few metres of water can provide a remarkable protective shield for workers and environment from the radiation.”

After about 10 years, the fuel bundles cool and lose most of their radioactivity. Then, nuclear workers use remote tools to place the fuel in the dry storage containers, which are kept on-site.

Darlington

OPG employees are the operation’s core strength. They are all highly trained, and kept safe by radiation-protection equipment and dosimeters.

OPG’s used-fuel storage faces regular inspections by regulators, and the inspectors also make surprise visits. The inspectors track every fuel bundle. And they ensure that the storage containers haven’t been tampered with.

Onsite storage has worked well. The containers are safe and secure. But the sites have to be managed and guarded, and the containers won’t last forever. Eventually, Canada intends to store all used fuel underground, at a site with the right geology and a willing host.

Communities that have shown interest in hosting the permanent site are learning more through OPG. “We’re part of the community, and we host a lot of tours,” says Val.

“Tours are an opportunity for communities to see for themselves what is involved in the safe handling of nuclear fuel and how these hazards can be safely handled without risk to the workers, the public, or the environment.”

CNA2015

Why Store Nuclear Waste Near Lake Huron?

Ontario Power Generation plans to store all of the province’s low- and intermediate-level nuclear waste underground, beneath 680 metres of rock and clay at a site near Kincardine, Ontario. This Deep Geologic Repository (DGR) will also be about 1.2 kilometres from Lake Huron. Most Kincardine residents support the idea, but others are concerned.

So, why store nuclear waste there?CN-Tower-Orig

In public consultations, the most-common concern was that radioactive material might seep through the rock and contaminate the lake. But the report from a federal government review panel that studied the DGR says that it would take water about 10 million years to move just one metre.

Some critics fear that an earthquake could change this. But the rock in the area has been undisturbed for a million years. Burying the waste in rock also lessens the risk, because a DGR would not be affected by surface hazards such as flooding.

Critics are concerned about the amount of radiation stored in the Kincardine DGR. However, the Kincardine DGR will not store spent fuel.  It will only store low- and intermediate-level waste. This includes items such as mops, protective clothing, water filters, or replaced mechanical parts. This material is much less radioactive than spent fuel. Also, radioactivity reduces over time. Radiation from intermediate-level waste would fall by about three-quarters over 100 years after closure, according to the Joint Review Panel.

Some people worry about having nuclear waste buried nearby. And some First Nations people think the DGR might reduce the spiritual value of the land, or infringe on their treaty rights. These concerns must be addressed because public acceptance is essential. OPG plans to continue engaging with the community.

As Kincardine’s mayor, Anne Eadie, says of her community, “We live here, we too are concerned about safety, and we love our lake. We’re satisfied that due diligence has been done.”

Dr. William Leiss, who led a risk assessment of four ways to manage the nuclear waste, agrees. He says, “By far the safest option for the low- and intermediate-level nuclear waste is emplacement in a deep underground chamber in the sedimentary rock at the Kincardine site. I believe that it is extremely unlikely that any radiation generated by the waste will ever escape from that chamber.”