Tag Archives: SIT

Uncategorized

99 uses for nuclear technology

  1. Producing clean energy
  2. Medical diagnostic procedures
  3. Radiation therapy
  4. Sterilizing medical equipment
  5. Killing bacteria, insects and parasites that cause food-borne diseases
  6. Delaying fruits and vegetables from ripening
  7. Inhibiting root vegetables from sprouting
  8. Halting meat and seafood from spoiling
  9. Producing new crop varieties
  10. Producing hardier crops
  11. The Sterile Insect Technique (SIT)
  12. Preventing the spread of infectious diseases such as Ebola, malaria and Zika
  13. Decontaminating spices
  14. Improving livestock health
  15. Improving water and fertilizer management
  16. Determining nutrient absorption rates
  17. Verifying the integrity of aircraft components
  18. Improving the reliability of automotive engines
  19. Increasing the compatibility of pacemakers with the human body
  20. Developing better delivery systems for pharmaceuticals
  21. Checking welds of gas and oil pipelines
  22. Analyzing the walls of dug holes
  23. Identifying mineral deposits
  24. Searching for underground caves or formations
  25. Verifying the integrity of roads and bridges
  26. Optimizing road life, rutting resistance and overall durability
  27. Producing safe drinking water
  28. Powering space missions
  29. Powering navigation beacons and satellites
  30. Powering ships and submarines
  31. Producing hydrogen
  32. Smoke detectors
  33. Sterilizing cosmetics and hair products
  34. Sterilizing contact lens solution
  35. Producing non-stick frying pans
  36. Preventing static build-up in photocopiers
  37. Making watches and clocks that “glow in the dark”
  38. Emergency exit signs
  39. Compact fluorescent light bulbs
  40. Increasing computer disk memory
  41. Golf balls with longer drives
  42. Lantern mantles
  43. Combating malnutrition
  44. Combating childhood obesity
  45. Analyzing metals, alloys and electronic materials
  46. Identifying extremely small and diluted forensic materials
  47. Characterizing archaeological and historical materials
  48. Carbon dating the age of rocks and organic materials
  49. Studying air pollution and aerosols
  50. Determining the origin, age and distribution of groundwater
  51. Assessing the interconnections between groundwater and surface water
  52. Understanding aquifer recharge systems
  53. Evaluating leakages through dams and irrigation channels
  54. Lake and reservoir dynamics
  55. Calculating flow and sedimentation rates
  56. Analyzing river discharges
  57. Measuring soil moisture
  58. Measuring magnitudes and sources of soil erosion
  59. Detecting and analyzing environmental pollutants
  60. Studying the mixing and flow rates of industrial material
  61. Locating leaks
  62. Measuring industrial equipment wear rates
  63. Thickness gauges for sheet material
  64. Density gauges for control of liquids, powders and solids
  65. Gauges to determine flow, level and weight
  66. X-ray fluorescent analyzers
  67. Gas chromatographs
  68. Instrument calibrators
  69. Krypton leak detectors
  70. Well logging
  71. Locating materials embedded inside others
  72. Detecting corrosion and moisture damage
  73. Measuring blood or plasma volume
  74. Quantifying bone mass
  75. Detecting changes in bone metabolism
  76. Assessing the blood flow to the brain
  77. Looking for hydrocephalus
  78. Diagnosing and following the progression of tumors or infections
  79. Evaluating how well food travels from the stomach to the intestines
  80. Finding bleeding sites within the abdomen
  81. Identifying gall bladder obstructions
  82. Evaluating the effectiveness of a perito-venous shunt
  83. Finding benign liver tumors
  84. Diagnosing cirrhosis, hepatitis, tumors and other digestive tract problems
  85. Finding blood clots in the lungs
  86. Detecting Meckel’s Diverticulum
  87. Detecting adrenal tumors or pheochromocytoma
  88. Detecting coronary artery disease
  89. Locating neuroendocrine tumors
  90. Evaluating a possible parathyroid adenoma
  91. Diagnosing stomach ulcers
  92. Studying kidney function
  93. Studying gland function
  94. Showing the direction of lymphatic drainage from cancer sites
  95. Checking for tear duct blockages
  96. Diagnosing conditions affecting the testicles
  97. Studying thyroid function
  98. Detailing the heart’s ability to pump blood
  99. Diagnosing ischemic bowel disease
Uncategorized

Nuclear Science and Your Apple

The Okanagan Valley in southern British Columbia is known for its beautiful beaches, pristine lakes and fruit production. In fact, this sweet snack is one of the main drivers of the local economy. But did you know that nuclear science plays a key role in protecting apple crops?

The value of tree fruit is almost a billion dollar per year business, making it one of the most important industries in the region. Apples reign king in the Okanagan, comprising over half of all planted land.

However, fruit growers in the Okanagan region have not always made headlines for bumper crops. Pests and disease have seriously threatened the viability of orchard growers in the past and one culprit- the codling moth, has taken a huge bite out of the B.C. apple industry.

This moth, or worm in your apple, directly attacks the fruit and can damage between 50-90% of crops. Using pesticides to control the moth and subsequent crop damage, brought with it negative environmental and health effects. The prolonged use of pesticides contributed to another challenge; immunity as the moths became resistant to chemicals.

To find a solution that was safe for the environment while controlling the devastation caused by the codling moth, researchers looked to nuclear technology. The team at the Okanagan-Kootenay Sterile Insect Release Program has found success with the Sterile Insect Technique (SIT). This technique has been able to reduce fruit damage and control the codling moth population in the B.C. Interior, all while reducing the use of chemicals. And they’ve been doing it successfully for over 20 years.

“Climate change is resulting in an increase of pests per season and there are growing concerns about resistance to chemical controls (pesticides). In B.C., we have reduced pesticides used to control codling moth by over 90%,” stated Cara Nelson, General Manager/Director of Business Development with the Okanagan-Kootenay Sterile Insect Release Program.

This locally funded and operated program has proven itself as a successful way to control a pest problem. Like birth control for pests, SIT uses small amounts of radiation to make the moths sterile thereby preventing reproduction.

“It’s like having an X-ray taken at the dentist. The patient does not become radioactive. While the radiation is different it’s a similar concept in that the radiation goes through the insect,” states Nelson.

While not widely known, research into codling moth SIT goes back to the 1970s when it was discovered that SIT could have profound benefits for the apple industry. The B.C. facility can produce approximately 780 million sterile moths per year at their facility. Currently, they deliver approximately 2,000 sterile moths to local growers per week. Traps are placed one hectare apart and they are checked weekly for both sterile and wild captures. The data is then uploaded via a smartphone app and sent off to local growers. Staff also carry out visual fruit inspections and monitor for “moth” hot spots.

“Many growers in the area don’t even know what codling moth damage looks like because they’ve never experienced it,” says Nelson. “However, if we stop the program the pest will infest again,” she warns.

For Nelson, she would like to see the success of this program go beyond B.C.’s borders. She hopes that both the provincial and federal government will make investments in further research and applications of SIT due to its ability to save agriculture economies while reducing the use of harmful chemicals. She believes that the benefits for SIT go beyond Canada’s borders and is currently working with other regions in Europe and the U.S. to provide both sterile moths and by way of knowledge transfer to help grow the acceptance and use of SIT as part of agriculture techniques. All thanks to nuclear science.

Uncategorized

The Nuclear Connection to Combating the Zika Virus

A team of experts at the IAEA is launching a new fight against Zika and it’s totally nuclear.

It’s an astonishing fact. One million people have already been affected by the Zika virus, a number that could quadruple by the end of this year.

zikavirus

The World Health Organization (WHO) issued a global emergency on the virus and recent reports indicated that it has spread its way into North America. Reports of over 100 cases have already surfaced in the United States.

The Zika virus is not new. It was first discovered in Uganda back in the 1940s and is named after the forest in which it was found. The virus is spread through a mosquito known as Aedes aegypti.

Symptoms can include mild fevers, skin rashes, joint pain and headaches. But far worse, the virus has been linked to brain damage in babies and, according to French researchers, can also lead to brain infections in adults.

The procedure is called the sterile insect technique (SIT) and it’s been around for over 50 years. Very effective in addressing insect pests, the technique requires using a small dose of radiation to make insects infertile. It has been proven successful in other pest insects, suppressing or eradicating them all together. However, this will be first time that the SIT technique will be applied to fight human disease.

“Think of it as a method of birth control. We produce sterile male mosquitos using radiation that sterilizes the sperm in the male mosquito,” says Rosemary Lees, a medical entomologist with the IAEA. “When we release a large number of these males we flood a region with sterile males so that the wild females are more likely to mate with them.”

Since female mosquitos usually only mate once, mating with infertile males would stop the further reproduction of Aedes mosquitos.

The SIT technique relies on something known as Cobalt-60, a radioactive isotope that is currently used to sterilize 40 per cent of the world’s medical devices. In Canada Cobalt-60 is harvested from Bruce Power and processed by Nordion.

“Cobalt-60 from our reactors already plays a major role in keeping single-use medical equipment safely sterilized, and with it now helping to stop the spread of diseases like Zika virus the world’s population continues to benefit from it,” said James Scongack, Vice President, Corporate Affairs, Bruce Power. “We look forward to working with Nordion to continue safely harvesting Cobalt-60 during our planned maintenance outages so it can help prevent disease across the world.”

The second half of the program involves understanding the wild mosquito environment through trapping mosquitos. The idea is that if researchers know how many wild mosquitoes there are, they will know how many to release. The hope is that if enough wild mosquitos are trapped and sterile ones breed, that the spread of the virus will cease.

“We are trying to remove the vector. Think of Zika transmission as a triangle. People, virus and the mosquito. By removing one of the three you can stop the transmission,” according to Jeremie Gilles, head of the mosquito group with the IAEA.

The WHO has declared the Zika virus a public health emergency and has advised all pregnant women to avoid affected areas. This is only the fourth time in history that this has happened since International Heath Regulations (IHR) came into place in 2007.

The work being done at the IAEA through the use of nuclear technology may be able to stop the spread of what could soon be a global pandemic in its tracks.