Tag Archives: sterile insect technique

Uncategorized

Nuclear Science and Your Apple

The Okanagan Valley in southern British Columbia is known for its beautiful beaches, pristine lakes and fruit production. In fact, this sweet snack is one of the main drivers of the local economy. But did you know that nuclear science plays a key role in protecting apple crops?

The value of tree fruit is almost a billion dollar per year business, making it one of the most important industries in the region. Apples reign king in the Okanagan, comprising over half of all planted land.

However, fruit growers in the Okanagan region have not always made headlines for bumper crops. Pests and disease have seriously threatened the viability of orchard growers in the past and one culprit- the codling moth, has taken a huge bite out of the B.C. apple industry.

This moth, or worm in your apple, directly attacks the fruit and can damage between 50-90% of crops. Using pesticides to control the moth and subsequent crop damage, brought with it negative environmental and health effects. The prolonged use of pesticides contributed to another challenge; immunity as the moths became resistant to chemicals.

To find a solution that was safe for the environment while controlling the devastation caused by the codling moth, researchers looked to nuclear technology. The team at the Okanagan-Kootenay Sterile Insect Release Program has found success with the Sterile Insect Technique (SIT). This technique has been able to reduce fruit damage and control the codling moth population in the B.C. Interior, all while reducing the use of chemicals. And they’ve been doing it successfully for over 20 years.

“Climate change is resulting in an increase of pests per season and there are growing concerns about resistance to chemical controls (pesticides). In B.C., we have reduced pesticides used to control codling moth by over 90%,” stated Cara Nelson, General Manager/Director of Business Development with the Okanagan-Kootenay Sterile Insect Release Program.

This locally funded and operated program has proven itself as a successful way to control a pest problem. Like birth control for pests, SIT uses small amounts of radiation to make the moths sterile thereby preventing reproduction.

“It’s like having an X-ray taken at the dentist. The patient does not become radioactive. While the radiation is different it’s a similar concept in that the radiation goes through the insect,” states Nelson.

While not widely known, research into codling moth SIT goes back to the 1970s when it was discovered that SIT could have profound benefits for the apple industry. The B.C. facility can produce approximately 780 million sterile moths per year at their facility. Currently, they deliver approximately 2,000 sterile moths to local growers per week. Traps are placed one hectare apart and they are checked weekly for both sterile and wild captures. The data is then uploaded via a smartphone app and sent off to local growers. Staff also carry out visual fruit inspections and monitor for “moth” hot spots.

“Many growers in the area don’t even know what codling moth damage looks like because they’ve never experienced it,” says Nelson. “However, if we stop the program the pest will infest again,” she warns.

For Nelson, she would like to see the success of this program go beyond B.C.’s borders. She hopes that both the provincial and federal government will make investments in further research and applications of SIT due to its ability to save agriculture economies while reducing the use of harmful chemicals. She believes that the benefits for SIT go beyond Canada’s borders and is currently working with other regions in Europe and the U.S. to provide both sterile moths and by way of knowledge transfer to help grow the acceptance and use of SIT as part of agriculture techniques. All thanks to nuclear science.

Uncategorized

The Nuclear Connection to Combating the Zika Virus

A team of experts at the IAEA is launching a new fight against Zika and it’s totally nuclear.

It’s an astonishing fact. One million people have already been affected by the Zika virus, a number that could quadruple by the end of this year.

zikavirus

The World Health Organization (WHO) issued a global emergency on the virus and recent reports indicated that it has spread its way into North America. Reports of over 100 cases have already surfaced in the United States.

The Zika virus is not new. It was first discovered in Uganda back in the 1940s and is named after the forest in which it was found. The virus is spread through a mosquito known as Aedes aegypti.

Symptoms can include mild fevers, skin rashes, joint pain and headaches. But far worse, the virus has been linked to brain damage in babies and, according to French researchers, can also lead to brain infections in adults.

The procedure is called the sterile insect technique (SIT) and it’s been around for over 50 years. Very effective in addressing insect pests, the technique requires using a small dose of radiation to make insects infertile. It has been proven successful in other pest insects, suppressing or eradicating them all together. However, this will be first time that the SIT technique will be applied to fight human disease.

“Think of it as a method of birth control. We produce sterile male mosquitos using radiation that sterilizes the sperm in the male mosquito,” says Rosemary Lees, a medical entomologist with the IAEA. “When we release a large number of these males we flood a region with sterile males so that the wild females are more likely to mate with them.”

Since female mosquitos usually only mate once, mating with infertile males would stop the further reproduction of Aedes mosquitos.

The SIT technique relies on something known as Cobalt-60, a radioactive isotope that is currently used to sterilize 40 per cent of the world’s medical devices. In Canada Cobalt-60 is harvested from Bruce Power and processed by Nordion.

“Cobalt-60 from our reactors already plays a major role in keeping single-use medical equipment safely sterilized, and with it now helping to stop the spread of diseases like Zika virus the world’s population continues to benefit from it,” said James Scongack, Vice President, Corporate Affairs, Bruce Power. “We look forward to working with Nordion to continue safely harvesting Cobalt-60 during our planned maintenance outages so it can help prevent disease across the world.”

The second half of the program involves understanding the wild mosquito environment through trapping mosquitos. The idea is that if researchers know how many wild mosquitoes there are, they will know how many to release. The hope is that if enough wild mosquitos are trapped and sterile ones breed, that the spread of the virus will cease.

“We are trying to remove the vector. Think of Zika transmission as a triangle. People, virus and the mosquito. By removing one of the three you can stop the transmission,” according to Jeremie Gilles, head of the mosquito group with the IAEA.

The WHO has declared the Zika virus a public health emergency and has advised all pregnant women to avoid affected areas. This is only the fourth time in history that this has happened since International Heath Regulations (IHR) came into place in 2007.

The work being done at the IAEA through the use of nuclear technology may be able to stop the spread of what could soon be a global pandemic in its tracks.