Tag Archives: world health organization

Uncategorized

Nuclear a heavyweight in the battle against obesity

For centuries, hunger and a lack of food was the norm for the general population.

Being overweight or obese was considered a symbol of wealth and prosperity. It wasn’t until improvements in farming and industrial technologies developed in the 18th century that the number of people who were overweight started to increase.

“The scarcity of food throughout most of history had led to connotations that being fat was good, and that corpulence and increased ‘flesh’ were desirable as reflected in the arts, literature, and medical opinion of the times,” a 2006 Baylor College of Medicine paper on the history of obesity explained.

Almost 200 years later, “being fat” or obesity is no longer good and has become a full-blown epidemic in both the developed and developing world.

In 1997, the World Health Organization (WHO) recognized obesity as a global epidemic as rates rose in countries such as Mexico, Brazil, China and Thailand.

“Overweight and obesity represent a rapidly growing threat to the health of populations in an increasing number of countries,” the WHO stated in a 2000 study. “Indeed, they are now so common that they are replacing more traditional problems such as undernutrition and infectious diseases as the most significant causes of ill-health.”

Now, nuclear technology is being used in the battle against childhood obesity, which has increased from 4.2% of the population to 6.7% between 1990 and 2010. Every third eleven-year-old child in Europe and Central Asia is overweight or obese, according to the WHO. And the problem is worse in developing countries. Of 42 million children under five years of age with excess weight, 31 million are in developing countries.

The IAEA is now supporting efforts to use isotope techniques to better measure body composition and energy expenditure to assess how lifestyle changes can help in the fight against childhood obesity, Body composition is assessed using the deuterium dilution technique by Fourier Transform Infrared Spectroscopy (FTIR).

Through the International Atomic Energy Agency (IAEA) technical cooperation programme, the IAEA has supplied FTIR equipment to authorities in Albania, Bosnia and Herzegovina, Greece and Montenegro to help with analysis of deuterium enrichment in saliva samples.

During May’s European Congress on Obesity conference, the IAEA held a symposium titled “Assessing body composition for better understanding of risks related to childhood obesity and designing effective interventions” to explain the role of isotope techniques.

So how does the technology work?

A person drinks a weighed amount of non-radioactive water with deuterium, a stable isotope of hydrogen.  After a few hours the isotope is spread throughout the body water, which can be sampled in the form of saliva or urine.  Deuterium enrichment in saliva is measured using an FTIR or an isotope ratio mass spectrometer (IRMS). Since the amount of deuterium is known, the total volume of body water can be calculated from the enrichment.  Based on the assumption, that fat is water-free, scientists can accurately determine the body’s ratio of fat and fat-free tissue.

“This nuclear technique is accurate and safe to use in all age groups, it is not associated with any radiation hazard, and is suitable for the use in field settings,” according to the IAEA.

Uncategorized

Nuclear Science: A Window to Heart Disease

According to the Heart and Stroke Foundation, 50,000 Canadians are diagnosed with heart failure every year.  It is estimated that half of all Canadians will be touched by heart failure, costing the health care system close to $3 billion annually. Globally, heart disease is responsible for over 30% of all deaths.

Enter cardiac nuclear medicine.

Instead of performing surgery, doctors, by using small amounts of radioactive material, can look inside the human body to diagnose diseases like heart disease. This noninvasive procedure involves injecting small amounts of radiation and looking at the heart at a molecular level, providing accurate and early diagnosis, which is key to treating and saving lives.

Argentina is increasing investment in nuclear medicine to help patients with cardiovascular disease, as recently highlighted by the International Atomic Energy Agency (IAEA). Through a collaboration between the Argentinean government and the National Atomic Energy Commission (CNEA), the IAEA is offering up training and equipment in order to provide increased access to nuclear medicine services.

“The multimillion-euro investment involves building six new centres across the country that will offer high-quality nuclear medicine and radiotherapy services. The new centres will be operating in the Argentinean provinces of Río Gallegos, Río Negro, Santiago del Estero, Formosa, Entre Ríos and La Pampa,” according to the IAEA.

There are two different types of tests that can be used to scan the heart. The main difference between the two is the type of radiotracer used. In a PET (Positron Emission Tomography) scan, positrons work with a tracer to take pictures of a patient’s heart. The pictures can detect blood flow; identify heart attack scars; and even detect if arteries are narrowed.

The second test that relies on nuclear medicine is a SPECT (Single Photo Emission Computed Tomography) scan.  It allows doctors to get a 3D image of a patients heart in order to determine overall heart health, including blood flow; whether or not a patient has had a heart attack; and to diagnose coronary artery disease or a build up of plaque inside the heart’s main arteries.

Investments in early cardiac detection and treatment are key. According to the World Health Organization (WHO); “Ischaemic heart disease, stroke, chronic obstructive lung disease and lower respiratory infections have remained the top killers during the past decade.” In Argentina, it is the leading cause of premature death.

Managing your diet, sleep and even stress levels can all lower a person’s risk for developing heart disease. Early detection can help to identify risks in time for treatment to save lives. Thanks to nuclear medicine this can be done. And before it’s too late.

Uncategorized

Nuclear Science, Climate Change & Sustainable Development: An Idea Worth Sharing

The fury of the Atlantic was on full display in late summer and early fall as hurricanes lined up to batter the Atlantic coast. Harvey, Irma and Maria knocked out power to millions of people and left communities in ruins. The power of Irma destroyed or damaged almost all the buildings on Barbuda, forcing the entire island to be abandoned. Meanwhile the force of Maria was enough to knock out power to all of Puerto Rico and citizens could be in the dark for months.

The Geophysical Fluid Dynamics Laboratory, part of the National Oceanic and Atmospheric Administration (NOAA), recently reported that ocean warming, resulting from climate change could have direct impacts on future hurricanes.

“Anthropogenic warming by the end of the 21st century will likely cause tropical cyclones globally to be more intense on average (by 2 to 11% according to model projections for an IPCC A1B scenario). This change would imply an even larger percentage increase in the destructive potential per storm, assuming no reduction in storm size.”

It’s not just through hurricanes that we see the direct impacts of climate change on human life. Climate change plays a huge role in access to food, water, health and the environment. As such, it is one of the contributing factors affecting sustainable global development. There are other factors to be sure. Together however, they condemn large parts of the world to poverty, underdevelopment, poor health amid a deteriorating environment. So, what to do?

To make life better for both developed and developing countries, the United Nations, in partnership with the global community, set out seventeen Sustainable Development Goals. These goals focus on meeting our needs today without compromising our future.

Thanks to uranium atoms, we can provide the necessary power to help lift people out of energy poverty, provide clean drinking water and help protect the environment, thereby bettering the lives of billions of people around the world. Nuclear science meets NINE of the seventeen sustainable development goals.

2 Zero Hunger:  Using nuclear science to alter the DNA of plants is a proven effective method to make them more resilient to climate change and is in use by 100 countries.

3 Good Health And Well-Being: A nuclear by-product, Cobalt-60, plays an important role in nuclear medicine. Low-grade Cobalt-60 is used to sterilize medical equipment such as syringes and catheters. High-Speed Activity (HSA) or medical-grade Cobalt-60 is widely used to treat cancer patients. Over 70 million people have been treated thanks to nuclear science.

6 Clean Water And Sanitation: Nuclear science using electron beams (e-beams) can break apart chemical bonds. China, the world’s largest textile industry, recently opened-up an e-beam wastewater treatment facility to treat and reuse wastewater used in clothing manufacturing.

7 Affordable And Clean Energy: According to IAEA projections, energy demand will rise by 60-100% by 2030. To help lift people out of poverty and realize the climate goals set out in Paris, low-carbon, cheap energy is needed. According to the Ontario Energy Board, in 2016, nuclear cost just under 7 cents per kilowatt hour, making it one of the most cost-effective, clean sources of energy. (Solar costs 48 cents per kilowatt hour and hydro 6 cents.)

9 Industry, Innovation And Infrastructure: Innovation in nuclear technology includes Generation IV reactors, hydrogen fuels, small modular reactors (SMRs) and fusion energy.

13 Climate Action: Globally, nuclear power avoids 2.5 billion tonnes of CO2 emissions every year, equal to taking approximately half of all (520 million cars) off the world’s roads. Nuclear power is the largest non-hydro source of low-carbon, clean energy worldwide, providing almost 12% of global electricity production.

14 Life Below Water: Nuclear science techniques that use radioisotopes can diagnose the impacts of ocean acidification on the food chain, giving scientists a better understanding of how rising acidity impacts both ecosystems and marine life.

15 Life On Land: Isotopes are a valuable environmental risk assessment tool as they can identify various contaminants which can help to assist with environmental monitoring and remediation of land areas.

17 Partnerships For The Goals: The global nuclear community has a long list of partnerships including various UN agencies such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO), universities and thank tanks and Indigenous communities.

While violent hurricane seasons are nothing new, the warming of our ocean waters, brought about by climate change, raise the concern that more catastrophic hurricanes, like the ones this season, could be the new normal. It’s just one example that underlines the importance of investments in sustainable science and technology, like nuclear, in order to keep the Earth on course to meet sustainable development goals today, ensuring a successful tomorrow.

Uncategorized

Climate Action, Clean Energy and the Case for Nuclear

By John Barrett
President and CEO
Canadian Nuclear Association

Originally published by Policy Magazine.

With more and more countries struggling to meet the emissions goals set out in the 2015 Paris Agreement, it makes sense to consider all the low-carbon options at our disposal. Canadian Nuclear Association CEO John Barrett makes the case, ahead of the G7 in Charlevoix, for an approach that includes a renewed focus on nuclear energy. 

As world leaders gather in Charlevoix, Quebec, this June for the 2018 G7 Summit, the agenda will focus on concrete solutions to global challenges that extend far beyond the borders of these seven countries. Climate change and clean energy will be front and centre. What does Canada have to offer in leadership and real solutions?

Canada and France are leading the way in clean energy generation in the G7 and this is due in part to major investments in low-carbon, affordable nuclear power. In fact, according to a recent report by Natural Resources Canada, Canada’s electrical system is 80 per cent free of greenhouse gas emissions, second only to France out of all G7 nations. Furthermore, thanks to investments in clean energy, Canada’s overall GHG emissions profile went down by a few percentage points in recent years even as the economy grew. 

This is important because time to meet international climate change targets is running out. 

The International Energy Agency’s first Global Energy and CO2 Status Report found global carbon emissions hit a record high in 2017, after three years of being flat. In Canada, a joint audit, conducted by federal Environment Commissioner Julie Gelfand and auditors general in nine provinces, found Canada was not on track to meet its 2020 or 2030 greenhouse gas emission targets. 

Investments in clean and affordable energy aren’t just about reducing emissions, they are the foundation to ensuring access to jobs, health-care and education. Clean and cheap energy is necessary to lift communities out of poverty while ensuring environmental protection. Without proper electricity, countries suffer. As the World Bank reported, “one-quarter of the world population have no access to electricity. In the absence of vigorous new policies, 1.4 billion people will still lack electricity in 2030.” 

And, according to the World Health Organization (WHO), seven million people die every year from air pollution. The challenge is to produce policies and investments to transition to a lower-carbon economy. And to help other countries, where appropriate, to acquire the technology and materials for generating electricity from low-carbon sources. 

Some propose single solutions based on a preferred technology. Single answers to complex problems invite false hope for technologies that are today neither available nor proven effective when quantity, reliability and affordability are considered. This adds a considerable risk for huge costs as well as detrimental environmental impacts. 

For example, Germany’s Energiewende is a cautionary tale on why going green isn’t as easy as it sounds. Germany has shut down nuclear plants while making huge investments in wind and solar energy. However, its emissions have not declined. The new renewable energy has only offset the loss of nuclear—meaning that Germany has given up on meeting its 2020 emissions targets. Coal still represents 40 per cent of Germany’s electricity mix. At the same time, the cost of power over the last decade has escalated, rising by close to 50 per cent. 

This begs the question that, if we are really concerned about the impacts of climate change and if we really do need to ramp up energy production as a method of lifting people out of poverty and driving economic growth, why would we not include a low-carbon option such as nuclear power?

Instead of looking to Germany, look to Canada, especially the province of Ontario. Ontario is the real clean energy leader. 

Nuclear power is the main driver of Ontario’s almost zero-emission energy grid. The province is home to one of the largest investments in clean-energy nuclear on the planet. Nuclear provides the bulk of the electrical generation to the province; close to two-thirds of the energy supplied every day comes from the nuclear generating stations. 

Outside Ontario, New Brunswick has also demonstrated the benefits of nuclear to a clean and affordable electrical grid; displacing tens of millions of tons of carbon dioxide from the atmosphere. And thanks to the power of uranium from Saskatchewan, a pop-can sized amount of this rock is all the amount a person would need to power their lifetime; using a small amount of the Earth to create massive amounts of power.

The next generation in nuclear energy technology is already here. Natural Resources Canada is leading a mapping process under the Energy Innovation Program to explore the potential for on- and off-grid applications for small modular reactor (SMR) technology in Canada. Driven by interested provincial and territorial governments and energy utilities, the exercise will assess the characteristics of different SMR technologies and how they align with user requirements and Canadian priorities. The roadmap will be an important step for Canada to advance innovative, next-generation nuclear technologies and become a global leader in the emerging SMR market.

Meanwhile, the CANDU-reactor refurbishment program, supported by Ontario’s Long-Term Energy Plan, is underway and moving through the first phase at the Darlington Nuclear Generating Station on time and on budget. This program will replace major components and refurbish 10 reactors in total over the next 12 years at Darlington NGS and at Bruce Power’s site in Kincardine.  

This $26 billion program is the single largest clean-energy investment by any jurisdiction in the western hemisphere and possibly beyond. Moreover, it has unleashed creative juices, as both Ontario Power Generation and Bruce Power are encouraging innovation and advanced technology use at every step. Already there are important advances in robotics and control systems that will have application in other, non-power sectors of the Canadian economy.

Canada’s nuclear contributions to the G7 aren’t limited to energy. Nuclear science and technology has many proven benefits, meeting nine of the United Nations 17 Sustainable Development Goals. Nuclear reactors provide opportunities for water desalination to communities that experience water shortages. Desalinating water requires a tremendous amount of energy and nuclear can do it while releasing hardly any greenhouse gas emissions into the atmosphere.

Research and innovation in health care has helped to make Canada a world leader in the production of Cobalt-60, which is used in many areas of our health industry. Cobalt-60 is used in sterilization, diagnostics and treatments. This includes isotopes to help detect and treat diseases, new research into gamma therapy, and blasting tumor cells from the inside out and protecting healthy, surrounding tissues.

Canada’s nuclear reactor technology and uranium exports have, over the last 30 years, contributed globally to the avoidance of at least a billion tonnes of CO2 (in displacing fossil fuel sources)—a unique and ongoing contribution to global climate change mitigation which no other Canadian energy source can claim.

The next generation of nuclear technology will build on Canada’s track record of excellence, looking to recycle current spent fuel, developing reactors that can provide power and heat to communities and even hold the promise of carbon-free gasoline. 

Climate change and clean energy are two of the most pressing issues of our time. Canada has a real opportunity to continue to take centre stage on these issues. The facts still matter. If we are to achieve our climate targets, sustainably manage resources for future generations and provide the world with access to clean and cheap energy, then we need nuclear to be part of the mix. Recognizing this is an important step to bringing real solutions today, without waiting for technologies that are not here now. 

With time running out to meet greenhouse gas emission targets and to prevent climate change from increasing temperatures by two degrees Celsius—now is not the time to expect a silver bullet to appear or to rely on one technology over another. 

A more effective and realistic approach is to foster collaboration that makes the best use of all available solutions to create a low-carbon future, allowing the world to meet emission targets while avoiding the potentially catastrophic impacts of climate change. 

Thanks to nuclear’s role in our electricity mix, Canada and Ontario can show how it can be done.

Uncategorized

Nuclear Science: Preventing Future Ebola Outbreaks

West Africa experienced the largest Ebola outbreak in history in 2014. It claimed over ten thousand lives and impacted the entire countries of Liberia, Sierra Leone and Guinea. In June 2016, the World Health Organization (WHO) declared an end to Ebola and months later, in April of this year, Liberia removed its temporary Ebola treatment facility only for Africa to announce another outbreak just a month later.

Contagious and often deadly, the Ebola virus or hemorrhagic fever can be transmitted from animal to human and through human-to-human contact. Between 2-21 days after infection, a patient will experience symptoms that resemble a flu (fever, sore throat, headaches). As the virus continues to damage the immune system and organs, internal and even external bleeding can occur. Death rates for the disease can be as high as 90%.

The 2014 outbreak closed many schools in the region that remained locked for almost an entire year. Close to twenty thousand children lost their families, or were left without one or both parents, according to information reported on by UNICEF.

To prevent a repeat of the deadly Ebola 2014 outbreak, a team of scientists with the International Atomic Energy Agency (IAEA) are using nuclear science and technology to be able to effectively diagnose such viruses.

“We demonstrated our ability to respond quickly to emergencies such as the Ebola and Zika viruses, supplying affected countries with simple nuclear-derived kits so they could detect the diseases quickly and accurately in the field,” said IAEA Director General Yukiya Amano in his speech in late May at the International Conference on Technical Cooperation.

Early and rapid detection helps to limit the spread of such diseases. There are nuclear-derived techniques that scientists can use to help identify Ebola such as polymerase chain reaction technology (PCR) which examines the DNA of cells. Researchers in the Democratic Republic of Congo are hunting  fruit bats in the hopes that they might hold answers on Ebola, specifically, how the virus jumps from bats to other animals or how it causes outbreaks. And it’s not just researchers in the Congo. As pointed out by the IAEA, veterinarians in Africa are working in partnership with the agency to help prevent the spread of Ebola.

“Around 75% of human diseases originate from animals, which is why it is so important to stop them at the animal level. Nuclear-derived technology helps us do this,” according to Abel Wade, Director, National Veterinary Laboratory (LANAVET), Yaounde, Cameroon.

As was witnessed during the 2014 Ebola outbreak, quick and effective diagnoses is key to preventing large-scale transmission and infection. The most recent outbreak in the Congo was declared under control only a month after it was discovered.

Uncategorized

Nuclear Science: Unlocking Answers To Malnutrition

A healthy diet begins with having enough food to eat, but we need more than that. A healthy diet provides a balance of proteins, carbohydrates, fats, vitamins and minerals which are critical to growth, development and disease resistance.

A deficiency in minerals and vitamins is called hidden hunger.  One might feel full but one’s growth and development can be stunted in the absence of necessary nutrients.

According to a 2014 report by the World Health Organization (WHO), hidden hunger and undernutrition affects nearly two billion people. That’s almost 1/3 of the global population.

In 2013, 6.5 million children died before five years of age. And 45% of these deaths are linked to maternal and child malnutrition.

MarchIAEAFINAL-v2

Relative risk of mortality associated with estimated low weight-for-age (Figure adapted from Caulfield et al. 2004, Am J Clin Nutr.)

Increased child mortality is not the only impact of undernutrition. A lack of food variety coupled with unhealthy environments and limited access to health care can increase the risk of disease, and hold back mental and physical development.

“165 million children are stunted or not as tall as they should be for their age. In some cases, they are stunted not because they are hungry but because the quality of their diets is poor or because they are frequently sick.” Christine Slater, nutrition specialist at the IAEA.

childeating

Chronic infections and repeated illnesses in children, like respiratory infections, can be an indicator of a deficiency in essential nutrients.

Nuclear technology is one tool in the fight against malnutrition. A technique called deuterium dilution helps to determine body composition, or the percentage of fat versus fat-free mass.

Deuterium is a stable form of hydrogen that includes a neutron. It bonds with oxygen to make water that acts just like regular water, but weighs more because of the neutron.

Taken into the body through drinking, concentrated deuterium passes into the body’s water, and after a few hours is evenly distributed throughout the body water. Body water is sampled as saliva, urine or blood. From the amount of deuterium consumed, and the concentration in body water, we can calculate the amount of fat-free mass. If this is subtracted from body weight, we have an estimate of the amount of fat in the body.

Scientists think this measurement technique gives more reliable results—especially for children—than measuring skinfold thickness or body-mass index. It can be used to evaluate programs that provide children with nutrients to promote healthy growth while limiting the risk of obesity later in life.

Deuterium dilution techniques have been used for many years in high-income countries, according to Slater, and with the help if the IAEA Technical Cooperation Program, these benefits can be found in low- and middle-income countries as well.

There are many other applications. For example, cancer treatments often leave patients malnourished. This procedure could help provide doctors with better information on their patients’ nutritional status.

As Slater points out, malnutrition is a complex problem requiring a multi-pronged solution that includes a better diet and cleaner environment. An effective diagnosis helps makes the solution possible.

“Malnutrition is not just to do with food and quality of diet but environmental influences,” says Slater. “Children who live in dirty environments and don’t have access to good sanitation can get sick and we find in a lot of cases that their guts are damaged.  So even if they get good quality food they can’t absorb the nutrients.”