Category Archives: Uncategorized

Uncategorized

Lessons learned from the Pickering nuclear alert

Sunday morning, an emergency alert was sent out across Ontario about an incident at the Pickering Nuclear Generating Station. The alert was mistakenly sent during a routine test by the Provincial Emergency Operations Centre, which coordinates the government’s response to major emergencies.

The alert brought nuclear to the forefront, along with many misconceptions about Ontario’s largest provider of clean and reliable electricity. This is what we’ve learned.

The industry is prepared to respond in the event of an emergency

“OPG has a sophisticated and robust notification process in place that we would immediately follow in the unlikely event of an incident at the station,” Chief Nuclear Officer Sean Granville said.

Reporting to the Ministry of the Solicitor General, Emergency Management Ontario would manage the off-site response to nuclear emergencies. It would determine the appropriate level of public action based on the Provincial Nuclear Emergency Response Plan.

This 200-page plan, which was last revised in 2017, provides clear instructions to every municipality that has a nuclear station within its jurisdiction. Local police, fire and ambulance crews implement the emergency plans.

Each of the three nuclear stations in Ontario (Pickering, Darlington and Bruce) also has its own plan and world-class emergency preparedness group.

The nuclear industry has a rigorous regulatory regime

The nuclear industry has one of the most rigorous regulatory regimes in the world. All Canadian nuclear operators work with the Word Association of Nuclear Operations to achieve the highest possible standards of nuclear safety. They also work with the International Atomic Energy Agency (IAEA) to promote the safe, secure and peaceful use of nuclear technologies. An IAEA report showed that Canada has established and maintains a robust and comprehensive nuclear security infrastructure.

As well, at any given time, the Canadian Nuclear Safety Commission (CNSC) has dedicated inspectors onsite at each of Canada’s nuclear power plants. It performs thousands of inspections annually to ensure Canada’s nuclear generating stations are operating safely. In 2017, the CNSC awarded OPG’s Pickering and Darlington stations its highest safety rating.

Ontario’s nuclear generating stations provide clean and reliable electricity

In 2018, the Pickering, Bruce and Darlington nuclear stations generated 60 per cent of Ontario’s electricity. It was their power that allowed OPG to close its coal-fired power plants, significantly reducing the province’s greenhouse gas emissions.

On a lifecycle basis, electricity from nuclear power generates an average of 16 g of carbon dioxide equivalent per kilowatt hour. That’s more than hydro (4 g) and wind (12 g), but less than solar (22 g for concentrated solar power [CSP] or 46 g for photovoltaic [PV]). That compares to natural gas at 469 g/kWh and coal at 1,001 g/kWh.

In Canada alone, nuclear energy helps avoid 80 million tonnes of carbon dioxide emissions per year. That’s about the same as taking 15 million passenger vehicles off the road.

Located east of Toronto, the Pickering Nuclear Generating Station is one of the largest nuclear stations in the world. It operates six CANDU reactors. The facility has been safely and reliably providing Ontario with electricity since 1971.

Uncategorized

CNA Response to Winnipeg Free Press story on SMRs

Re: Small nuclear reactors no solution to climate change (Dec. 20)

In his opinion piece, Dave Taylor makes a number of incorrect assumptions.

Small modular reactors (SMRs) are not a “fantasy” nor an “unproven concept on paper.” They are real.

This week, two floating reactors started providing electricity to the town of Pevek in Russia. These are the world’s first SMRs. Christmas lights were switched on using electricity from the reactors. The town will start receiving 64 megawatts of electricity from the reactors early next year.

SMRs can be deployed in remote communities in Canada that still use fossil fuels to generate electricity. This is because nuclear is a cleaner form of electricity generation, and it’s simply not economical to build hundreds of kilometres of power lines to connect these communities to the grid.

SMRs can also be used to provide emissions-free energy to existing grids or off-grid power to industry or mines.

The author also suggests the cost of nuclear energy in Ontario is high. According to the Ontario Energy Board’s 2019 Regulated Price Plan Supply Cost Report the cost of nuclear was 8.0 cents per kilowatt hour. That’s 4.4 cents per kilowatt hour lower than the average price of electricity in Ontario. Only hydro electricity costs less in Ontario.

The November 2019 Memorandum of Understanding between Ontario, New Brunswick and Saskatchewan to develop SMRs is the beginning of a transformation of our energy sector.

The critical transition to a low-carbon economy will be almost impossible without the reliable, safe and clean energy that nuclear technology provides.

As clearly stated by the International Energy Association in its May 2019 report, nuclear power is required to meet our global emissions reduction targets.

John Gorman
President and CEO
Canadian Nuclear Association
Ottawa, ON

Uncategorized

Stretching our Carbon Budget with Nuclear Power

By John Gorman
Originally published by MediaPlanet, December 17, 2019

Nuclear power is a practical and inexpensive technology, and it’s essential to avoiding the worst effects of climate change in the coming decades.

Modelling our climate is complex, but the big picture is simple: to keep global warming under 1.5°C, as proposed under the Paris Agreement, there’s only so much carbon we can pour into the atmosphere – about 580 gigatonnes of carbon dioxide.

Humanity is burning about 37 gigatonnes per year, which means that the time left to stave off catastrophic change is short. By the time we burn through the budget, we’ll have to be taking out as much as we put in.

Limited national progress

Through the Paris Agreement, countries around the world committed to target limits on their total carbon emissions. If kept, these should keep us within the carbon budget.

But they aren’t. Many countries are not even coming close to their targets, partly because of increased demand for power and rapid industrialization. Germany, for example, has had to increase its fossil-fuel use because of the closure of nuclear power plants. And China is massively increasing coal-fired electricity generation. Even Canada is not on track to meeting its target of reducing carbon emissions by 30% from 2005 to 2030. According to the International Energy Agency, greenhouse-gas pollution has risen worldwide for two consecutive years.

Green alternatives

There have been hopeful signs. Prices of low-carbon renewable energy, such as wind and solar, have dropped substantially in recent years, and there’s been a corresponding increase in use. In 2017, solar power reached a global capacity of 398 GW. And carbon capture and sequestration, the only technology proven to remove carbon from industrial operations, has been demonstrated in Weyburn, Saskatchewan. We can expect these technologies to continue to advance. But can this be done in the decade or so we have left in the carbon budget?

Nuclear power: clean and affordable

Given how short our timeline is, nuclear power offers a practical way ahead, and it’s already doing a lot to keep carbon out of our atmosphere.

The lifecycle carbon emissions of nuclear power are comparable to wind and even lower than for solar. According to the World Nuclear Association, the world’s 445 reactors are saving 2.5 gigatonnes of carbon-dioxide emissions every year. This is why Ontario, which generates almost 60% of its electricity through nuclear, has seen a steady drop in air pollution since 2003. It’s why countries such as Sweden and France have been able to decarbonize their economies. It’s also why provinces such as New Brunswick and Saskatchewan, and many countries around the world, are taking a closer look at what we call the “new nuclear” – small modular reactors that can power industrial activities and remote communities.

Environmentalists look to a future powered by renewables, but there is also increasing recognition of nuclear power as part of that future, or at least a bridge to it. This is partly because the transformation of our energy sector is going to be expensive, while nuclear power delivers electricity at competitive prices. This, along with the increasing capacity of nuclear technologies to support variable sources of electricity like wind and solar, makes nuclear an attractive option for decarbonizing our electricity grids.

As our climate crisis deepens, and our needs for clean electricity increase, nuclear power is emerging as our most practical, clean technology choice.

Uncategorized

Small modular reactors help us take a giant leap in the fight against climate change

By John Gorman
Originally published in The Globe and Mail, December 12, 2019

To many Canadians, it may not seem like a big deal that the three provinces that have nuclear sectors – Ontario, New Brunswick and Saskatchewan – signed an agreement to develop small modular reactors (SMRs). But this milestone represents a giant leap forward for Canadian industry and the fight against climate change.

I’m new to the nuclear industry, but I’ve been working in the energy sector for 20 years. I’ve seen new technologies revolutionize how we produce and manage electricity. The development and deployment of SMRs has the potential to be even more transformative than the introduction of wind and solar power.

Why am I and others in the energy sector so excited about SMRs? The answer is in their name. First, they are small. Large reactors are powerful: They generate clean and inexpensive electricity for decades. But they take years to build, they are suitable only for large demand and they can’t be moved. SMRs, on the other hand, are like solar power in that they can be scaled to suit local needs.

SMRs are also modular, meaning they can be mass-produced and shipped to remote locations. A small city could use an SMR until it reaches capacity, then add another as the city grows. A mine could use an SMR to help with its peak production, then ship it to a new location when operations slow down.

The modular approach will also help to reduce costs. A new advanced reactor could cost more than $1-billion, but mass production removes duplication of the costs of licensing and customization. Bulk purchasing of parts and replication of skills would reduce costs further. In short, the upfront investment will be big, while the payoff in terms of inexpensive energy will last decades.

SMRs are to large reactors what desktops were to mainframe computers in the 1980s. They made computing practical, flexible and accessible for everyone.

There are three main ways that SMRs can transform Canada’s energy sector. First, as more provinces and territories phase out coal, SMRs can fill in the gap, producing similar amounts of power without carbon emissions and other pollution. SMRs produce a steady supply of electricity making it an ideal partner to wind and solar by eliminating the need for fossil fuel backups when the wind isn’t blowing or the sun isn’t shining.

Second, SMRs can be deployed in the many remote communities in Canada that still use fossil fuels to generate electricity because it’s simply not economical to build hundreds of kilometres of power lines to connect to the grid.

Finally, SMRs can help with the operation of heavy industry, such as oil sands and mines. These facilities are a big part of Canada’s economy, but they are often remote and off-grid, and they need a lot of heat and power to operate.

There are some environmentalists who still resist the expansion of nuclear power. When I was chief executive of the Canadian Solar Industries Association, I was one of them. That’s until I realized that the critical transition to a low-carbon economy will be almost impossible without the reliable, safe and clean energy that nuclear technology provides. We need nuclear power to reduce emissions, as an increasing number of environmentalists, industry leaders and the International Energy Agency agree.

SMRs have several safety advantages built into them. Some designs use molten salt or liquid sodium as a coolant instead of water. Some are built so that the reactor shuts down if it is not being actively managed, while others are designed so that the reaction slows if it gets too hot. And the designs incorporate several advances in managing waste as well. Some are designed to require refuelling only every few years or even decades, and some “recycle” spent fuel, producing only a fraction of the waste of a conventional reactor.

We’re about to witness a fascinating race to determine the best SMR design, and some of the leading candidates are Canadian. Three companies have now passed the first review by the Canadian Nuclear Safety Commission. They are now entering the second phase, a more detailed examination of their safety. Seven more designs are now in the first phase, and Canadian Nuclear Laboratories plans to have a demonstration unit built by 2026.

Canada has a great history as a leader in nuclear technology, dating back decades. We have some of the largest resources of uranium in the world. We also have the right people with the right skills to build safe and reliable nuclear reactors. And now that three provinces consider them a key technology for meeting emission targets, we have a clear demand for SMRs.

The agreement between the three provinces is the beginning of a transformation of our energy sector. But it’s more than that. We’ve just witnessed an election campaign that exposed regional divisions around energy and climate change. I don’t think SMRs are the entire answer to this debate, but they have the potential to be a uniting force between federal and provincial interests. Working together, we can use SMRs to meet our growing energy needs, reduce emissions and introduce carbon-free electricity to many new places in Canada and around the world.

Uncategorized

ONA Response to NewmarketToday Opinion Piece

Re: Ontario needs to move away from nuclear power to reduce electricity costs (November 13)

The Ontario Clean Air Alliance has once again misrepresented the cost of nuclear energy and put forward proposals that simply don’t work.

According to the OEB, the folks who create our bills, in 2019 the cost of nuclear energy was 8 cents per kWh. That’s 4.39 cents per kWh lower than the average cost to produce electricity in Ontario. Nuclear energy provided 60 per cent of Ontario’s electricity in 2018 helping to keep costs down.

Leveraging Ontario’s nuclear advantage, our province has phased-off of coal and eliminated smog days. That’s a real impact on clean air in Ontario that helps people with asthma and other respiratory illnesses enjoy a summer day and Torontonians enjoy a blue sky. This is a world-leading achievement that we must be proud of. Even Quebec, which has a large hydro fleet still has over 40 air quality warnings every year.

Refurbishing the Bruce and Darlington stations will extend their lives for decades, providing a cost-effective, long-term supply of clear electricity for Ontario. This investment in energy security for Ontario is also creating thousands of jobs within the province and generating life-saving medical isotopes in the process.

Market mechanisms in Ontario help to ensure we receive power from Quebec when we need it and when it makes economic sense. The reverse is also true. Last January, Ontario provided Quebec with more than 400 GWhs to support its winter demand for power.

Quebec simply does not have the capacity to send power to Ontario in the winter and relies on the nuclear fleet in Ontario to help keep the air as clean as possible.

Ontario is committed to a nuclear future with the life extension of the existing nuclear fleet, which is now scheduled to provide reliable and affordable electricity into 2060s.

The Financial Accountability Office (FAO) released a report that states there is currently no portfolio of alternative low emissions generation that could replace nuclear generation at a comparable cost.

The FAO report is clear: ratepayers are protected; the Ontario’s Nuclear Refurbishment plan is projected to provide ratepayers with a long-term supply of low-cost, low emissions electricity.

This transformational change in Ontario was accomplished through the strength of Ontario’s nuclear sector that provided 90 per cent of the incremental electricity needed to phase out coal.

Thankfully, today, the people of Ontario have cleaner air from cleaner energy.

With such a reliable supply of carbon-free energy being provided by Ontario’s nuclear fleet, the future is bright, and the sky is blue for Ontario residents.

Taylor McKenna, Ontario’s Nuclear Advantage

Uncategorized

Our move to zero emissions must use nuclear energy

By John Gorman
Originally published in Policy Options, September 27, 2019

his spring I changed jobs. I shifted from advocating for renewable energy to promoting nuclear energy — to many, a surprising twist in my career path. But for me, it was a logical outcome of the realization that the climate emergency requires us all to pick up the pace of transformation.

Solar technology is clean, it empowers people and businesses, and it’s scalable. I remain a big proponent of both wind and solar.

But I and others are becoming increasingly aware that wind and solar aren’t enough to respond to the climate emergency. Twenty years ago, 36 percent of the world’s electric power was clean, coming from sources that don’t emit greenhouse gases (nuclear plus renewables, including hydro).  Twenty years and $3 trillion in investment later, the non-GHG-emitting share of world electricity is still at 36 percent.  Seeing these unchanging numbers has been a shock.  Despite the impressive growth of wind and solar, we’re not moving the needle on decarbonizing global electricity systems.

I’m convinced that two factors stop renewables from cleaning up the world’s energy system. One is that electricity demand keeps growing quickly, and that need has to be met somehow. Too often, coal and gas are the only sources that can finish filling that gap.

The other is that wind and solar are intermittent, and fossil fuels are being used to back them up. It’s clear that if renewables are going to transform the climate picture, they will have to partner with something more sustainable.

The International Energy Agency has just studied this problem, and it’s absolutely clear in its report that two changes are needed. First, we have to stop closing nuclear plants prematurely. These closures, driven by politics or by the availability of cheap natural gas, take huge chunks of clean power out of the system, further increasing the demand gap that gets at least partly filled by fossil fuels. Second, we have to stop backing up wind and solar with fossil fuels.

What else can partner with renewables? Well, there’s very little time — 10 or 20 years, at best — to get this done. So it has to be a proven, or at least modelled and tested, technology that we can start building today.

What technology has already decarbonized entire large economies, like France and Sweden and Ontario? Nuclear energy has. And while existing nuclear plants have shown they can pair with variable wind and solar to some extent, the new, small reactors will be even more flexible, and they’ll be more distributed in location, too.

Today about 81 percent of Canada’s electricity comes from clean sources such as nuclear, hydro, wind and solar. However, four provinces still have high concentrations of fossil fuels. The challenge is to shift the country the rest of the way toward a clean grid.

In the absence of a plan to do this, as we push these provinces to get off coal, we’re pushing them toward gas — which only reduces the emissions by about half. Add in the growth of demand for power, and a switch to gas will hardly make a dent in emissions.

Any realistic way to respond to the climate emergency and move to zero emissions has to include nuclear energy. Once we face this reality, it becomes a question of how we bring nuclear into the mix. We might make progress with more stringent emissions rules that would slow the rush toward gas. But it would be better to have a plan for investing in a combined clean energy solution: renewables and small, distributed nuclear plants, integrated together. That’s the direction I want to go in with my role at the Canadian Nuclear Association.

The urgency of the climate challenge means we have to use proven technologies, or at least technologies that are well along in testing and commercialization. Hoping that brand-new, untested, unscaled technologies are the answer just risks deferring action until they are scaled up and proven and safe and commercialized. That might take decades and cannot be relied on. Focusing on new technology is highly uncertain and ignores the scale of worldwide infrastructure change that we should be doing right now. The only readily available technology that can complete our response to this emergency is nuclear.

Fortunately, the urgency is forcing decision-makers to revisit their attitudes to nuclear. They’re seeing that current solution paths aren’t working. Those arguing for 100 per cent renewables — and I was one of them — are starting to admit this. And when, as a solar energy advocate, I started to look again at nuclear, I realized how much misinformation is out there. If you look at its full record and its full life cycle, nuclear is safe, reliable and clean.

Individual actions — veganism, electric cars, not flying — have the same challenges as renewables: they’re valuable, they deserve credit, but what if they can’t turn the tide? Household decisions can go some distance, but it’s policy steps — like all the anti-pollution measures taken in the 1970s and ’80s — that will be transformative.

The value of declaring an emergency is that the public might decide to give governments the space and the permission to make really hard policy decisions, and take action. That’s how we have to respond now.